Glioblastoma: from molecular pathology to targeted treatment.

Glioblastoma (GBM) is one of the most lethal human cancers. Genomic analyses are defining the molecular architecture of GBM, uncovering relevant subsets of patients whose disease may require different treatments. Many pharmacological targets have been revealed, promising to transform patient care through targeted therapies. However, for most patients, clinical responses to targeted inhibitors are either not apparent or not durable. In this review, we address the challenge of developing more effective, molecularly guided approaches for the treatment of GBM patients. We summarize the current state of knowledge regarding molecular classifiers and examine their benefit for stratifying patients for treatment. We survey the molecular landscape of the disease, discussing the challenges raised by acquired drug resistance. Furthermore, we analyze the biochemical features of GBM, suggesting a next generation of drug targets, and we examine the contribution of tumor heterogeneity and its implications. We conclude with an analysis of the experimental approaches and their potential benefit to patients.

[1]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[2]  Debyani Chakravarty,et al.  Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response , 2012, Proceedings of the National Academy of Sciences.

[3]  James Brugarolas,et al.  Renal-cell carcinoma--molecular pathways and therapies. , 2007, The New England journal of medicine.

[4]  Joseph Gera,et al.  mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. , 2007, Cancer research.

[5]  J. D. de Groot,et al.  Mediators of Glioblastoma Resistance and Invasion during Antivascular Endothelial Growth Factor Therapy , 2009, Clinical Cancer Research.

[6]  E. Holland,et al.  Astrocyte-Specific Expression Patterns Associated with the PDGF-Induced Glioma Microenvironment , 2012, PloS one.

[7]  K. Aldape,et al.  Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation , 2011, Nature.

[8]  R. Stupp,et al.  Individualized Targeted Therapy for Glioblastoma: Fact or Fiction? , 2012, Cancer journal.

[9]  T. Cloughesy,et al.  Graded functional diffusion map-defined characteristics of apparent diffusion coefficients predict overall survival in recurrent glioblastoma treated with bevacizumab. , 2011, Neuro-oncology.

[10]  P. Kleihues,et al.  Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. , 2005, Journal of neuropathology and experimental neurology.

[11]  B. Manning,et al.  mTOR links oncogenic signaling to tumor cell metabolism , 2011, Journal of Molecular Medicine.

[12]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[13]  S. Horvath,et al.  Antitumor Activity of Rapamycin in a Phase I Trial for Patients with Recurrent PTEN-Deficient Glioblastoma , 2008, PLoS medicine.

[14]  H. Christofk,et al.  Pyruvate kinase M2 is a phosphotyrosine-binding protein , 2008, Nature.

[15]  D. Steindler,et al.  Human cortical glial tumors contain neural stem‐like cells expressing astroglial and neuronal markers in vitro , 2002, Glia.

[16]  J. Uhm,et al.  The transcriptional network for mesenchymal transformation of brain tumours , 2010 .

[17]  C. Thompson,et al.  The molecular determinants of de novo nucleotide biosynthesis in cancer cells. , 2009, Current opinion in genetics & development.

[18]  D. Bigner,et al.  Immunotherapy of brain tumors. , 2012, Handbook of clinical neurology.

[19]  N. Sonenberg,et al.  Signal transduction. Protein synthesis and oncogenesis meet again. , 2006, Science.

[20]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[21]  Arturo Alvarez-Buylla,et al.  Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. , 2009, Cancer cell.

[22]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[23]  Paul S Mischel,et al.  The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation , 2010, Proceedings of the National Academy of Sciences.

[24]  Webster K. Cavenee,et al.  A Drosophila Model for EGFR-Ras and PI3K-Dependent Human Glioma , 2009, PLoS genetics.

[25]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[26]  Douglas L Black,et al.  EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. , 2013, Cell metabolism.

[27]  P. Kleihues,et al.  Definition of Primary and Secondary Glioblastoma—Response , 2014, Clinical Cancer Research.

[28]  W. Cavenee,et al.  Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. Cloughesy,et al.  Molecular pathology in adult high‐grade gliomas: from molecular diagnostics to target therapies , 2012, Neuropathology and applied neurobiology.

[30]  S. Pastorino,et al.  Transdifferentiation of glioblastoma cells into vascular endothelial cells , 2011, Proceedings of the National Academy of Sciences.

[31]  R. Verhaak,et al.  Transformation by the R Enantiomer of 2-Hydroxyglutarate Linked to EglN Activation , 2012, Nature.

[32]  Claudio R. Santos,et al.  SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth , 2008, Cell metabolism.

[33]  Matthew S. Brown,et al.  Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. , 2009, Radiology.

[34]  Xuerui Yang,et al.  An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma , 2011, Cell.

[35]  D. Louis,et al.  AKT activation in human glioblastomas enhances proliferation via TSC2 and S6 kinase signaling. , 2006, Cancer research.

[36]  A. Viale,et al.  IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype , 2012, Nature.

[37]  Forest M White,et al.  Oncogenic EGFR Signaling Networks in Glioma , 2009, Science Signaling.

[38]  M. J. van den Bent,et al.  Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[39]  Yoshitaka Narita,et al.  Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. , 2010, Genes & development.

[40]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[41]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[42]  Jason A. Koutcher,et al.  Identification of a tumour suppressor network opposing nuclear Akt function , 2006, Nature.

[43]  Koji Yoshimoto,et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. , 2005, The New England journal of medicine.

[44]  H. Varmus,et al.  Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain , 2005, PLoS medicine.

[45]  A. Guha,et al.  Conditional Astroglial Rictor Overexpression Induces Malignant Glioma in Mice , 2012, PloS one.

[46]  H. Woo,et al.  Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. , 2013, Cell reports.

[47]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[48]  Susan M. Chang,et al.  A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. , 2010, Neuro-oncology.

[49]  L. Chin,et al.  Mutant EGFR is required for maintenance of glioma growth in vivo, and its ablation leads to escape from receptor dependence , 2010, Proceedings of the National Academy of Sciences.

[50]  Rebecca A Betensky,et al.  Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. , 2011, Cancer cell.

[51]  Paul S Mischel,et al.  Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. , 2012, Cancer discovery.

[52]  R. McLendon,et al.  Direct In Vivo Evidence for Tumor Propagation by Glioblastoma Cancer Stem Cells , 2011, PloS one.

[53]  J. Rich,et al.  Seeing is Believing: Are Cancer Stem Cells the Loch Ness Monster of Tumor Biology? , 2011, Stem Cell Reviews and Reports.

[54]  D. Cheresh,et al.  VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. , 2012, Cancer cell.

[55]  L. Ricci-Vitiani,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[56]  J. Goldstein,et al.  The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor , 1997, Cell.

[57]  Qiulian Wu,et al.  Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity. , 2012, Genes & development.

[58]  R. Arceci Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing , 2012 .

[59]  M. Prados,et al.  An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. , 2011, Cancer discovery.

[60]  A. Brandes,et al.  Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO) , 2007, British Journal of Cancer.

[61]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[62]  Tracy T Batchelor,et al.  Glioblastoma recurrence after cediranib therapy in patients: lack of "rebound" revascularization as mode of escape. , 2011, Cancer research.

[63]  Rong Fan,et al.  Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells , 2011, Proceedings of the National Academy of Sciences.

[64]  R. McLendon,et al.  Integrin alpha 6 regulates glioblastoma stem cells. , 2010, Cell stem cell.

[65]  Eric C. Holland,et al.  Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice , 2000, Nature Genetics.

[66]  E. Gottlieb,et al.  The music of lipids: How lipid composition orchestrates cellular behaviour , 2012, Acta oncologica.

[67]  S. Gabriel,et al.  Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain , 2006, PLoS medicine.

[68]  S. Hariono,et al.  Kinetics of inhibitor cycling underlie therapeutic disparities between EGFR-driven lung and brain cancers. , 2012, Cancer discovery.

[69]  R. McLendon,et al.  Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth , 2013, Cell.

[70]  L. Liau,et al.  Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation , 2013, Nature Genetics.

[71]  J. Uhm An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2009 .

[72]  Ivan Babic,et al.  Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. , 2011, Cancer discovery.

[73]  C. Brennan,et al.  Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations , 2009, PloS one.

[74]  M. Lemmon,et al.  Occupy EGFR. , 2012, Cancer discovery.

[75]  Ivan Babic,et al.  De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. , 2013, Cancer discovery.

[76]  Anne E Carpenter,et al.  mTOR Complex 1 Regulates Lipin 1 Localization to Control the SREBP Pathway , 2011, Cell.

[77]  Zhaoshi Jiang,et al.  Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[78]  H. Okano,et al.  PML mediates glioblastoma resistance to mammalian target of rapamycin (mTOR)-targeted therapies , 2013, Proceedings of the National Academy of Sciences.

[79]  T. Mikkelsen,et al.  Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[80]  P. Kleihues,et al.  IDH1 Mutations as Molecular Signature and Predictive Factor of Secondary Glioblastomas , 2009, Clinical Cancer Research.

[81]  T. Graeber,et al.  An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. , 2013, Cancer research.

[82]  S. Horvath,et al.  Gene Expression Profiling of Gliomas Strongly Predicts Survival , 2004, Cancer Research.

[83]  Michelle J Hickey,et al.  Cellular and vaccine therapeutic approaches for gliomas , 2010, Journal of Translational Medicine.

[84]  Eric A Bushong,et al.  Dedifferentiation of Neurons and Astrocytes by Oncogenes Can Induce Gliomas in Mice , 2012, Science.

[85]  Paul S Mischel,et al.  The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis , 2009, Proceedings of the National Academy of Sciences.

[86]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[87]  Yonghong Xiao,et al.  microRNA regulatory network inference identifies miR-34a as a novel regulator of TGF-β signaling in glioblastoma. , 2012, Cancer discovery.

[88]  P. Mischel,et al.  Multiple functions of a glioblastoma fusion oncogene. , 2013, The Journal of clinical investigation.

[89]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[90]  A. Guha,et al.  Mouse Models to Interrogate the Implications of the Differentiation Status in the Ontogeny of Gliomas , 2011, Oncotarget.

[91]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[92]  R. McLendon,et al.  Laminin alpha 2 enables glioblastoma stem cell growth , 2012, Annals of neurology.

[93]  F. Davis,et al.  Prevalence estimates for primary brain tumors in the United States by behavior and major histology groups. , 2001, Neuro-oncology.

[94]  D. Zagzag,et al.  Mechanisms of glioma-associated neovascularization. , 2012, The American journal of pathology.

[95]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2009, Nature.

[96]  D. Sabatini,et al.  mTOR Signaling. , 2012, Cold Spring Harbor perspectives in biology.

[97]  Anderson Nonmetabolic functions of pyruvate kinase isoform M2 in controlling cell cycle progression and tumorigenesis , 2012 .

[98]  E. Holland,et al.  Genetic modeling of gliomas in mice: New tools to tackle old problems , 2011, Glia.

[99]  M. Assanah,et al.  HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer , 2010, Nature.

[100]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[101]  R. Stupp,et al.  Decision making and management of gliomas: practical considerations. , 2012, Annals of oncology : official journal of the European Society for Medical Oncology.

[102]  Dawen Zhao,et al.  Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. , 2005, Cancer cell.

[103]  P. Ward,et al.  Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. , 2012, Cancer cell.

[104]  D. Housman,et al.  Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis , 2009, Proceedings of the National Academy of Sciences.

[105]  Rong Wang,et al.  Glioblastoma stem-like cells give rise to tumour endothelium , 2010, Nature.

[106]  C. James,et al.  Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel , 2007, Molecular Cancer Therapeutics.

[107]  D. Brat,et al.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma , 2012, Science.

[108]  T. Golub,et al.  Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion , 2012, Nature.

[109]  W. Cavenee,et al.  Heterogeneity maintenance in glioblastoma: a social network. , 2011, Cancer research.

[110]  Carlo C. Maley,et al.  Clonal evolution in cancer , 2012, Nature.

[111]  H. Fine,et al.  SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. , 2009, Cell stem cell.

[112]  Ioan Tabus,et al.  Pathway alterations during glioma progression revealed by reverse phase protein lysate arrays , 2006, Proteomics.

[113]  Keith L. Ligon,et al.  Coactivation of Receptor Tyrosine Kinases Affects the Response of Tumor Cells to Targeted Therapies , 2007, Science.

[114]  E. Lander,et al.  Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma , 2007, Proceedings of the National Academy of Sciences.

[115]  M. Nykter,et al.  The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. , 2013, The Journal of clinical investigation.

[116]  Qicheng Ma,et al.  Activation of a metabolic gene regulatory network downstream of mTOR complex 1. , 2010, Molecular cell.

[117]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[118]  Miriam Scadeng,et al.  Development of a novel mouse glioma model using lentiviral vectors , 2009, Nature Medicine.

[119]  Daniel H. Geschwind,et al.  Cancerous stem cells can arise from pediatric brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[120]  John A Butman,et al.  Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[121]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[122]  T. Golub,et al.  mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways , 2004, Nature Medicine.

[123]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth after chemotherapy , 2012 .

[124]  Gordon B Mills,et al.  mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. , 2006, Cancer research.

[125]  Sang Gyun Kim,et al.  Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation , 2008, Proceedings of the National Academy of Sciences.

[126]  C. James,et al.  Akt and Autophagy Cooperate to Promote Survival of Drug-Resistant Glioma , 2010, Science Signaling.

[127]  R. DePinho,et al.  Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. , 2002, Cancer cell.

[128]  L. Chin,et al.  Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. , 2006, Cancer research.

[129]  P. Sorger,et al.  Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis , 2009, Nature.

[130]  Chunxu Qu,et al.  Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. , 2011, Cancer cell.

[131]  Koji Yoshimoto,et al.  Distinct transcription profiles of primary and secondary glioblastoma subgroups. , 2006, Cancer research.

[132]  K. Aldape,et al.  NFKBIA deletion in glioblastomas. , 2011, The New England journal of medicine.

[133]  J. Stamler,et al.  Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2 , 2011, Cell.

[134]  P. Kleihues,et al.  The Definition of Primary and Secondary Glioblastoma , 2012, Clinical Cancer Research.

[135]  K. Aldape,et al.  The Use of Global Profiling in Biomarker Development for Gliomas , 2011, Brain pathology.

[136]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[137]  A. Harris,et al.  Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth , 2013, Cancer & Metabolism.

[138]  B. Turk,et al.  AMPK phosphorylation of raptor mediates a metabolic checkpoint. , 2008, Molecular cell.

[139]  B. Viollet,et al.  Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy , 2011, Science.

[140]  S. Horvath,et al.  Development of a Real-time RT-PCR Assay for Detecting EGFRvIII in Glioblastoma Samples , 2008, Clinical Cancer Research.

[141]  S. Vandenberg,et al.  Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240 , 2012, Proceedings of the National Academy of Sciences.

[142]  N. Sonenberg,et al.  Protein Synthesis and Oncogenesis Meet Again , 2006, Science.

[143]  Rosa Bernardi,et al.  PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR , 2006, Nature.

[144]  I. Bayazitov,et al.  A perivascular niche for brain tumor stem cells. , 2007, Cancer cell.

[145]  Paul S Mischel,et al.  Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. , 2003, Cancer research.

[146]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[147]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[148]  D. Louis The next step in brain tumor classification: “Let us now praise famous men”… or molecules? , 2012, Acta Neuropathologica.

[149]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[150]  C. Brennan,et al.  Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. , 2010, Cell stem cell.

[151]  Michael Weller,et al.  Standards of care for treatment of recurrent glioblastoma--are we there yet? , 2013, Neuro-oncology.

[152]  R. Deberardinis,et al.  Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. , 2012, Cell metabolism.

[153]  Kornelia Polyak,et al.  Cellular heterogeneity and molecular evolution in cancer. , 2013, Annual review of pathology.

[154]  K. Aldape,et al.  ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. , 2012, Nature cell biology.

[155]  K. Aldape,et al.  EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. , 2012, Molecular cell.

[156]  W. Yung,et al.  Safety and efficacy of erlotinib in first-relapse glioblastoma: a phase II open-label study. , 2010, Neuro-oncology.

[157]  Sally Freels,et al.  Prevalence estimates for primary brain tumors in the United States by age, gender, behavior, and histology. , 2010, Neuro-oncology.

[158]  S. Pannullo,et al.  Phase I/II study of oral erlotinib for treatment of relapsed/refractory glioblastoma multiforme and anaplastic astrocytoma. , 2012, Journal of experimental therapeutics & oncology.

[159]  S. Horvath,et al.  EGFR Signaling Through an Akt-SREBP-1–Dependent, Rapamycin-Resistant Pathway Sensitizes Glioblastomas to Antilipogenic Therapy , 2009, Science Signaling.

[160]  Omar Abdel-Wahab,et al.  The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. , 2010, Cancer cell.

[161]  Lynda Chin,et al.  Emerging insights into the molecular and cellular basis of glioblastoma. , 2012, Genes & development.

[162]  D. Guertin,et al.  Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex , 2005, Science.

[163]  S. Berger,et al.  IDH mutation impairs histone demethylation and results in a block to cell differentiation , 2012, Nature.