Reduced-order minimum time control of advection-reaction-diffusion systems via dynamic programming.
暂无分享,去创建一个
[1] H. Fattorini. Time and norm optimal controls: A survey of recent results and open problems , 2011 .
[2] Karl Kunisch,et al. TIME OPTIMAL CONTROL OF THE HEAT EQUATION WITH POINTWISE CONTROL CONSTRAINTS , 2013 .
[3] Peter Benner,et al. Numerical Solution of Optimal Control Problems for Parabolic Systems , 2006 .
[4] Alessandro Alla,et al. An Efficient Policy Iteration Algorithm for Dynamic Programming Equations , 2013, SIAM J. Sci. Comput..
[5] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[6] Enrique Otárola,et al. A locking-free scheme for the LQR control of a Timoshenko beam , 2011, J. Comput. Appl. Math..
[8] S. Dubljevic,et al. Predictive control of parabolic PDEs with state and control constraints , 2006, Proceedings of the 2004 American Control Conference.
[9] Tatjana Stykel,et al. A balanced truncation-based strategy for optimal control of evolution problems , 2011, Optim. Methods Softw..
[10] Karl Kunisch,et al. Optimal feedback control of undamped wave equations by solving a HJB equation , 2015 .
[11] Maurizio Falcone,et al. An Adaptive POD Approximation Method for the Control of Advection-Diffusion Equations , 2013, Control and Optimization with PDE Constraints.
[12] M. Falcone,et al. A semi-Lagrangian scheme for Lp-penalized minimum time problems , 2014 .
[13] Gal Berkooz,et al. Proper orthogonal decomposition , 1996 .
[14] Karl Kunisch,et al. POD-based feedback control of the burgers equation by solving the evolutionary HJB equation , 2005 .
[15] R. Bellman,et al. On the “bang-bang” control problem , 1956 .
[16] Ionel Roventa,et al. Time optimal boundary controls for the heat equation , 2012 .
[17] M. Falcone,et al. Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations , 2014 .
[18] Mary Fanett. A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .
[19] Enrique Zuazua,et al. Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities , 1999 .
[20] H. Beckert,et al. J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .
[21] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[22] L. Grüne,et al. Distributed and boundary model predictive control for the heat equation , 2012 .
[23] Jean-Pierre Raymond,et al. Pontryagin's Principle for Time-Optimal Problems , 1999 .
[24] Roberto Ferretti. Internal Approximation Schemes for Optimal Control Problems in Hilbert Spaces , 1997 .
[25] M. Wheeler. A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .
[26] M. Bardi,et al. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .
[27] Lei Xie,et al. HJB-POD-Based Feedback Design for the Optimal Control of Evolution Problems , 2004, SIAM J. Appl. Dyn. Syst..
[28] Enrique Otárola,et al. Numerical approximation of the LQR problem in a strongly damped wave equation , 2010, Comput. Optim. Appl..