Reduced-order minimum time control of advection-reaction-diffusion systems via dynamic programming.

A numerical approach for a time-optimal feedback control problem for an advection-reaction-diffusion model is considered. Our approach is composed by three main building blocks: approximation of the abstract system dynamics, feedback computation based on dynamic programming and state observation. For the approximation of the abstract system dynamics, we consider a finite element semi-discretization in space, leading to a large-scale dynamical system, whose dimension is reduced by means of a Balanced Truncation algorithm. Next, we apply the dynamic programming principle over the reduced dynamics, and characterize the value function of the optimal control problem in terms of viscosity solutions of the resulting Hamilton-Jacobi-Bellman equation, which is solved via a semi-Lagrangian scheme. Finally, the computation of corresponding feedback controls and its insertion into the control loop is performed by implementing a Luenberger observer.

[1]  H. Fattorini Time and norm optimal controls: A survey of recent results and open problems , 2011 .

[2]  Karl Kunisch,et al.  TIME OPTIMAL CONTROL OF THE HEAT EQUATION WITH POINTWISE CONTROL CONSTRAINTS , 2013 .

[3]  Peter Benner,et al.  Numerical Solution of Optimal Control Problems for Parabolic Systems , 2006 .

[4]  Alessandro Alla,et al.  An Efficient Policy Iteration Algorithm for Dynamic Programming Equations , 2013, SIAM J. Sci. Comput..

[5]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[6]  Enrique Otárola,et al.  A locking-free scheme for the LQR control of a Timoshenko beam , 2011, J. Comput. Appl. Math..

[7]  Finite element approximation of time optimal control problems for parabolic equations with Dirichelt boundary conditions , 1982 .

[8]  S. Dubljevic,et al.  Predictive control of parabolic PDEs with state and control constraints , 2006, Proceedings of the 2004 American Control Conference.

[9]  Tatjana Stykel,et al.  A balanced truncation-based strategy for optimal control of evolution problems , 2011, Optim. Methods Softw..

[10]  Karl Kunisch,et al.  Optimal feedback control of undamped wave equations by solving a HJB equation , 2015 .

[11]  Maurizio Falcone,et al.  An Adaptive POD Approximation Method for the Control of Advection-Diffusion Equations , 2013, Control and Optimization with PDE Constraints.

[12]  M. Falcone,et al.  A semi-Lagrangian scheme for Lp-penalized minimum time problems , 2014 .

[13]  Gal Berkooz,et al.  Proper orthogonal decomposition , 1996 .

[14]  Karl Kunisch,et al.  POD-based feedback control of the burgers equation by solving the evolutionary HJB equation , 2005 .

[15]  R. Bellman,et al.  On the “bang-bang” control problem , 1956 .

[16]  Ionel Roventa,et al.  Time optimal boundary controls for the heat equation , 2012 .

[17]  M. Falcone,et al.  Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations , 2014 .

[18]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[19]  Enrique Zuazua,et al.  Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities , 1999 .

[20]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[21]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[22]  L. Grüne,et al.  Distributed and boundary model predictive control for the heat equation , 2012 .

[23]  Jean-Pierre Raymond,et al.  Pontryagin's Principle for Time-Optimal Problems , 1999 .

[24]  Roberto Ferretti Internal Approximation Schemes for Optimal Control Problems in Hilbert Spaces , 1997 .

[25]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[26]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[27]  Lei Xie,et al.  HJB-POD-Based Feedback Design for the Optimal Control of Evolution Problems , 2004, SIAM J. Appl. Dyn. Syst..

[28]  Enrique Otárola,et al.  Numerical approximation of the LQR problem in a strongly damped wave equation , 2010, Comput. Optim. Appl..