Field programmable spin arrays for scalable quantum repeaters

[1]  T. Schröder,et al.  Optically Coherent Nitrogen-Vacancy Defect Centers in Diamond Nanostructures , 2022, Physical Review X.

[2]  H. Kosaka,et al.  Optically addressable universal holonomic quantum gates on diamond spins , 2022, Nature Photonics.

[3]  D. Englund,et al.  Zero-Added-Loss Entangled-Photon Multiplexing for Ground- and Space-Based Quantum Networks , 2022, Physical Review Applied.

[4]  H. Kosaka,et al.  Backward propagating quantum repeater protocol with multiple quantum memories , 2022, 2205.04243.

[5]  Stephanie Wehner,et al.  A quantum router architecture for high-fidelity entanglement flows in quantum networks , 2020, npj Quantum Information.

[6]  N. D. de Leon,et al.  Materials challenges for quantum technologies based on color centers in diamond , 2021, MRS Bulletin.

[7]  K. Fu,et al.  Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond , 2021, Physical Review B.

[8]  Noel H. Wan,et al.  Quantum networks based on color centers in diamond , 2021, Journal of Applied Physics.

[9]  Laura dos Santos Martins,et al.  Realization of a multinode quantum network of remote solid-state qubits , 2021, Science.

[10]  D. Englund,et al.  Investigation of the Stark Effect on a Centrosymmetric Quantum Emitter in Diamond. , 2021, Physical review letters.

[11]  M. Markham,et al.  Entanglement of dark electron-nuclear spin defects in diamond , 2020, Nature Communications.

[12]  Dirk Englund,et al.  Freely scalable and reconfigurable optical hardware for deep learning , 2020, Scientific Reports.

[13]  M. Ruf,et al.  Resonant Excitation and Purcell Enhancement of Coherent Nitrogen-Vacancy Centers Coupled to a Fabry-Perot Microcavity , 2020, 2009.08204.

[14]  Jian-Wei Pan,et al.  Entanglement of two quantum memories via fibres over dozens of kilometres , 2020, Nature.

[15]  Dirk Englund,et al.  Large-scale integration of artificial atoms in hybrid photonic circuits , 2020, Nature.

[16]  M. Lončar,et al.  Coherent acoustic control of a single silicon vacancy spin in diamond , 2019, Nature Communications.

[17]  D. Englund,et al.  Experimental demonstration of memory-enhanced quantum communication , 2019, Nature.

[18]  G. Dreyfuss,et al.  U1 snRNP regulates cancer cell migration and invasion , 2019, bioRxiv.

[19]  Matthew E. Trusheim,et al.  Quantum nanophotonics with group IV defects in diamond , 2019, Nature Communications.

[20]  C. Simon,et al.  Cavity-assisted controlled phase-flip gates , 2019, 1911.02176.

[21]  P. Stroganov,et al.  An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond , 2019, Physical Review B.

[22]  Mohamed I. Ibrahim,et al.  A CMOS-integrated quantum sensor based on nitrogen–vacancy centres , 2019, Nature Electronics.

[23]  D. Beggs,et al.  99% beta factor and directional coupling of quantum dots to fast light in photonic crystal waveguides determined by spectral imaging , 2019, Physical Review B.

[24]  Kenneth Goodenough,et al.  Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission , 2018, Physical Review A.

[25]  D. Englund,et al.  Individual control and readout of qubits in a sub-diffraction volume , 2018, npj Quantum Information.

[26]  Juerg Leuthold,et al.  Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon , 2018, Nature Materials.

[27]  Jiho Joo,et al.  Cost-Effective $2\times 2$ Silicon Nitride Mach-Zehnder Interferometric (MZI) Thermo-Optic Switch , 2018, IEEE Photonics Technology Letters.

[28]  Je-Hyung Kim,et al.  Super-Radiant Emission from Quantum Dots in a Nanophotonic Waveguide. , 2018, Nano letters.

[29]  I. Gerhardt,et al.  Nanoscale Spin Manipulation with Pulsed Magnetic Gradient Fields from a Hard Disc Drive Writer. , 2018, Nano letters.

[30]  Marko Loncar,et al.  Strain engineering of the silicon-vacancy center in diamond , 2018, Physical Review B.

[31]  R. Walsworth,et al.  Ultralong Dephasing Times in Solid-State Spin Ensembles via Quantum Control , 2018, Physical Review X.

[32]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[33]  V. O. Shkolnikov,et al.  Spin-strain interaction in nitrogen-vacancy centers in diamond , 2017, Physical Review B.

[34]  P. Lodahl,et al.  Numerical modeling of the coupling efficiency of single quantum emitters in photonic-crystal waveguides , 2017, 1704.08576.

[35]  T. W. J. Fronik Homogeneous broadening of the zero-phonon line in the nitrogen-vacancy centre in diamond for all strain regimes , 2018 .

[36]  Maud Vinet,et al.  Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot , 2017, 1708.02903.

[37]  G. Rempe,et al.  Cavity Carving of Atomic Bell States. , 2017, Physical review letters.

[38]  M. Lukin,et al.  Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. , 2016, Physical review letters.

[39]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[40]  M. A. Bashir,et al.  Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. , 2017, Nature nanotechnology.

[41]  M. K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[42]  R. Walsworth,et al.  Selective addressing of solid-state spins at the nanoscale via magnetic resonance frequency encoding , 2016, 1610.06630.

[43]  Kun Huang,et al.  High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared. , 2016, Optics letters.

[44]  Andrew A. Houck,et al.  Suppression of photon shot noise dephasing in a tunable coupling superconducting qubit , 2016, 1603.01224.

[45]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[46]  J. Song,et al.  Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. , 2014, Physical review letters.

[47]  Oskar Painter,et al.  Two-dimensional phononic-photonic band gap optomechanical crystal cavity. , 2014, Physical review letters.

[48]  D. Awschalom,et al.  Electrically and mechanically tunable electron spins in silicon carbide color centers. , 2013, Physical review letters.

[49]  D. Awschalom,et al.  Electrically Driven Spin Resonance in Silicon Carbide Color Centers , 2013, 1310.4844.

[50]  Cody Jones,et al.  A high-speed optical link to entangle quantum dots , 2013, 1310.4609.

[51]  Ronald L. Walsworth,et al.  Nanoscale magnetometry with NV centers in diamond , 2013 .

[52]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[53]  D. Seyringer,et al.  Design and simulation of 128-channel 10 GHz AWG for ultra-dense wavelength division multiplexing , 2012, 2012 14th International Conference on Transparent Optical Networks (ICTON).

[54]  M. Markham,et al.  Demonstration of entanglement-by-measurement of solid-state qubits , 2012, Nature Physics.

[55]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[56]  A Faraon,et al.  Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond. , 2011, Physical review letters.

[57]  Hannes Bernien,et al.  Two-photon quantum interference from separate nitrogen vacancy centers in diamond. , 2011, Physical review letters.

[58]  L. Hollenberg,et al.  Theory of the ground state spin of the NV- center in diamond: II. Spin solutions, time-evolution, relaxation and inhomogeneous dephasing , 2011, 1111.5882.

[59]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[60]  D. Awschalom,et al.  A quantum memory intrinsic to single nitrogen-vacancy centres in diamond , 2011 .

[61]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[62]  D D Awschalom,et al.  Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. , 2011, Physical review letters.

[63]  Neil B. Manson,et al.  The negatively charged nitrogen-vacancy centre in diamond: the electronic solution , 2010, 1008.5224.

[64]  T. Krauss,et al.  Loss engineered slow light waveguides. , 2010, Optics express.

[65]  F. Omnès,et al.  Extreme dielectric strength in boron doped homoepitaxial diamond , 2010 .

[66]  Efthimios Kaxiras,et al.  Properties of nitrogen-vacancy centers in diamond: the group theoretic approach , 2010, 1010.1338.

[67]  Andreas W. Schell,et al.  Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity , 2010, 1008.3504.

[68]  Jean-Marc Fedeli,et al.  Low Loss MMI Couplers for High Performance MZI Modulators , 2010, IEEE Photonics Technology Letters.

[69]  S. Spillane,et al.  Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond , 2010, Nanotechnology.

[70]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[71]  P. Barclay,et al.  “Pick and place” Positioning of diamond nanocrystals on microcavities , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[72]  S. Hughes,et al.  Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide , 2007 .

[73]  P. Hemmer,et al.  Stark shift control of single optical centers in diamond. , 2006, Physical review letters.

[74]  Y. Shubin,et al.  Preparation and Properties of Thin HfO2 Films , 2005 .

[75]  D. Awschalom,et al.  Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond , 2005, cond-mat/0507706.

[76]  Roy G. Gordon,et al.  ALD of Hafnium Oxide Thin Films from Tetrakis(ethylmethylamino)hafnium and Ozone , 2005 .

[77]  P. Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2004, quant-ph/0408040.

[78]  M. Al-Kuhaili Optical properties of hafnium oxide thin films and their application in energy-efficient windows , 2004 .

[79]  Jane P. Chang,et al.  Dielectric property and thermal stability of HfO2 on silicon , 2002 .

[80]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[81]  Jun-Ichi Matsuda,et al.  Measurements of leakage currents and the capacitance of the storage capacitor in a single DRAM cell , 1994 .

[82]  Scott McWilliams,et al.  Device properties of homoepitaxially grown diamond , 1993 .

[83]  Kim M. Jones,et al.  Study of sputtered HfO2 thin films on silicon , 1992 .