Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses

Abstract We have determined infrared molar absorptivities for water absorption bands in Fe-bearing and Fe-free andesitic glasses. Water dissolves in andesitic glasses as both hydroxyl groups and molecular water as observed in other silicate glasses. Concentrations of molecular water and hydroxyl species are a strong function of total water content. IR molar absorptivities for Fe-bearing andesite are ε3570 = 62.32 ± 0.42 L/mol·cm, ε4500 = 0.79 ± 0.07 L/mol·cm, ε5200 = 1.07 ± 0.07 L/mol·cm, and ε1630 = 42.34 ± 2.77 L/mol·cm. Molar absorptivities for Fe-free andesite are 69.21 ± 0.52 L/mol·cm for e3570, 0.89 ± 0.07 L/mol·cm for e4500, 1.46 ± 0.07 L/mol·cm for e5200, and 52.05 ± 2.85 L/mol·cm for ε1630. Molar absorptivities show significant compositional dependencies that can be predicted based on tetrahedral cation (Si+4, Al+3)/total cation fraction

[1]  S. Newman,et al.  Measurement of water in rhyolitic glasses; calibration of an infrared spectroscopic technique , 1986 .

[2]  P. McMillan,et al.  Analytical methods for volatiles in glasses , 1994 .

[3]  E. F. Osborn,et al.  The Solubility of Water and Effects of Oxygen Fugacity and Water Content on Crystallization in Mafic Magmas , 1964 .

[4]  H. Behrens,et al.  The speciation of water in haplogranitic glasses and melts determined by in situ near-infrared spectroscopy , 1995 .

[5]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[6]  H. Behrens Determination of water solubilities in high-viscosity melts; an experimental study on NaAlSi 3 O 8 and KAlSi 3 O 8 melts , 1995 .

[7]  G. Layne,et al.  Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses , 1995 .

[8]  S. Newman,et al.  The role of water in the petrogenesis of Mariana trough magmas , 1994 .

[9]  M. Rutherford,et al.  The Origin of Rhyolite and Plagiogranite in Oceanic Crust: An Experimental Study , 1983 .

[10]  R. Lange The effect of H 2 O, CO 2 and F on the density and viscosity of silicate melts , 1994 .

[11]  T. P. Dale,et al.  II. Researches on the refraction, dispersion, and sensitiveness of liquids , 1863, Proceedings of the Royal Society of London.

[12]  E. Stolper,et al.  The influence of bulk composition on the speciation of water in silicate glasses , 1990 .

[13]  T. Grove,et al.  Petrogenesis of Andesites , 1986 .

[14]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[15]  D. Eggler,et al.  Crystallization and Fractionation Trends in the System Andesite-H2O-CO2-O2 at Pressures to 10 Kb , 1973 .

[16]  P. Richet,et al.  Water and the viscosity of andesite melts , 1996 .

[17]  C. Mandeville,et al.  Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia , 1996 .

[18]  Youxue Zhang H2O in rhyolitic glasses and melts: Measurement, speciation, solubility, and diffusion , 1999 .

[19]  P. Richet,et al.  Density calculations for silicate liquids. I. Revised method for aluminosilicate compositions , 1982 .

[20]  E. Stolper,et al.  An Experimental Study of Water and Carbon Dioxide Solubilities in Mid-Ocean Ridge Basaltic Liquids. Part I: Calibration and Solubility Models , 1995 .

[21]  J. Gill Orogenic Andesites and Plate Tectonics , 1981 .

[22]  S. Newman,et al.  H2O and CO2 in magmas from the Mariana arc and back arc systems , 2000 .

[23]  Shiv k. Sharma,et al.  The effect of bulk composition on the speciation of water in submarine volcanic glasses , 1992 .

[24]  H. Keppler,et al.  Infrared spectroscopy of hydrous silicate melts to 1000 degrees C and 10 kbar; direct observation of H 2 O speciation in a diamond-anvil cell , 1995 .

[25]  M. Kusakabe,et al.  Infrared spectroscopy of hydrous glasses of arc magma compositions , 1997 .

[26]  H. Keppler,et al.  Water speciation in rhyolitic melt determined by in-situ infrared spectroscopy , 1999 .

[27]  E. Stolper,et al.  Water in Albitic Glasses , 1989 .

[28]  S. Jakobsson Solubility of water and carbon dioxide in an icelandite at 1400 °C and 10 kilobars , 1997 .

[29]  D. Dingwell,et al.  Near-infrared spectroscopic determination of water species in glasses of the system MAlSi3O8 (M = Li, Na, K) : an interlaboratory study , 1996 .

[30]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[31]  Youxue Zhang,et al.  NEW CALIBRATION OF INFRARED MEASUREMENT OF DISSOLVED WATER IN RHYOLITIC GLASSES , 1997 .

[32]  F. Holtz,et al.  Compositional dependence of molar absorptivities of near-infrared OH- and H2O bands in rhyolitic to basaltic glasses , 2001 .

[33]  B. L. Butler,et al.  Infrared Spectra of a Water‐Containing Glass , 1980 .

[34]  T. Sisson,et al.  Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia , 1998, Nature.

[35]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[36]  T. Grove,et al.  Late Holocene hydrous mafic magmatism at the Paint Pot Crater and Callahan flows, Medicine Lake Volcano, N. California and the influence of H2O in the generation of silicic magmas , 2000 .

[37]  H. Behrens,et al.  An experimental investigation on diffusion of water in haplogranitic melts , 1997 .

[38]  Edward M. Stolper,et al.  Water in silicate glasses: An infrared spectroscopic study , 1982 .

[39]  Harry Y. McSween,et al.  Rocks at the Mars Pathfinder Landing Site , 1999 .

[40]  E. Stolper The speciation of water in silicate melts , 1982 .

[41]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .