EWMA control charts in statistical process monitoring

In today’s world, the amount of available data is steadily increasing, and it is often of interest to detect changes in the data. Statistical process monitoring (SPM) provides tools to monitor data streams and to signal changes in the data. One of these tools is the control chart. The topic of this dissertation is a special control chart: the exponentially weighted moving average (EWMA) chart. A control chart plots the data together with two control limits. A control chart signals a (possible) change when the plotted data exceeds the control limits. A control chart performs well if it signals changes in the data quickly, without triggering frequent false alarms. Before a control chart can be set up, estimates of the process parameters are needed. To this end an initial data set is collected. In practice this data set often contains outliers, recording errors, and other data quality issues. These so-called ‘contaminations’ are problematic as they influence the parameter estimates. We investigate robust estimation methods to ensure accurate estimation of the process parameters. We propose a new estimation method based on screening and show that this new method outperforms existing estimation methods, when the type of contaminations is unknown. In the second phase of this dissertation we study the effect of estimation on the performance of the EWMA chart and give recommendations regarding its design. We show that traditionally designed charts have very variable performance. We study an alternative design procedure based conditional performance which provides control over the variability in performance.

[1]  Philippe Castagliola,et al.  A New S2‐EWMA Control Chart for Monitoring the Process Variance , 2005 .

[2]  Muhammad Riaz,et al.  Robust Location Estimators for the Ū Control Chart , 2011 .

[3]  R. Plante,et al.  Statistical Process Control via the Subgroup Bootstrap , 1995 .

[4]  Mahmoud A. Mahmoud,et al.  The Inertial Properties of Quality Control Charts , 2005, Technometrics.

[5]  William H. Woodall,et al.  The Use of Control Charts in Health-Care and Public-Health Surveillance , 2006 .

[6]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[7]  Benjamin T. Hazen,et al.  Applying Control Chart Methods to Enhance Data Quality , 2014, Technometrics.

[8]  William H. Woodall,et al.  Guaranteed conditional performance of the S2 control chart with estimated parameters , 2015 .

[9]  Giovanna Capizzi,et al.  Phase I Distribution-Free Analysis of Multivariate Data , 2013, Technometrics.

[10]  Stefan H Steiner,et al.  Assessing the effect of estimation error on risk-adjusted CUSUM chart performance. , 2012, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[11]  B. P. Dudding,et al.  Quality control charts , 1942 .

[12]  Georg Carle,et al.  Application of Forecasting Techniques and Control Charts for Traffic Anomaly Detection , 2008 .

[13]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[14]  Stephen V. Crowder,et al.  An EWMA for Monitoring a Process Standard Deviation , 1992 .

[15]  Ning Wang,et al.  The Effect of Parameter Estimation on Upper-sided Bernoulli Cumulative Sum Charts , 2013, Qual. Reliab. Eng. Int..

[16]  Hengjian Cui,et al.  On Weighted Randomly Trimmed Means , 2007, J. Syst. Sci. Complex..

[17]  Douglas C. Montgomery,et al.  Some Current Directions in the Theory and Application of Statistical Process Monitoring , 2014 .

[18]  Marcus B. Perry,et al.  The Exponentially Weighted Moving Average , 2010 .

[19]  Murat Kulahci,et al.  Recent Advances and Future Directions for Quality Engineering , 2016, Qual. Reliab. Eng. Int..

[20]  Stefan H. Steiner Exponentially Weighted Moving Average Control Charts with Time-Varying Control Limits and Fast Initial Response , 1998 .

[21]  William H. Woodall,et al.  An overview and perspective on social network monitoring , 2016, ArXiv.

[22]  York Marcel Dekker The State of Statistical Process Control as We Proceed into the 21st Century , 2000 .

[23]  M. A. Graham,et al.  Phase I Statistical Process Control Charts: An Overview and Some Results , 2008 .

[24]  Muhammad Riaz,et al.  Design and Analysis of Control Charts for Standard Deviation with Estimated Parameters , 2011 .

[25]  P. Robinson,et al.  Average Run Lengths of Geometric Moving Average Charts by Numerical Methods , 1978 .

[26]  Marianne Frisén,et al.  Optimal Sequential Surveillance for Finance, Public Health, and Other Areas , 2009 .

[27]  Kwok-Leung Tsui,et al.  A Review of Healthcare, Public Health, and Syndromic Surveillance , 2008 .

[28]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[29]  William H. Woodall,et al.  Another Look at the EWMA Control Chart with Estimated Parameters , 2015 .

[30]  Willem Albers,et al.  New Corrections for Old Control Charts , 2003 .

[31]  Sven Knoth Run length quantiles of EWMA control charts monitoring normal mean or/and variance , 2015 .

[32]  Stefan H. Steiner,et al.  An Overview of Phase I Analysis for Process Improvement and Monitoring , 2014 .

[33]  V CrowderStephen A simple method for studying run-length distribution of exponentially weighted moving average charts , 1987 .

[34]  William H. Woodall,et al.  A head-to-head comparative study of the conditional performance of control charts based on estimated parameters , 2017 .

[35]  Wei Jiang,et al.  A New EWMA Chart for Monitoring Process Dispersion , 2008 .

[36]  Søren Bisgaard,et al.  The Future of Quality Technology: From a Manufacturing to a Knowledge Economy & From Defects to Innovations , 2012 .

[37]  David J. Spiegelhalter,et al.  Statistical methods for healthcare regulation: rating, screening and surveillance , 2012 .

[38]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[39]  Ronald J. M. M. Does,et al.  A Robust Estimator for Location in Phase I Based on an EWMA Chart , 2014 .

[40]  L. Allison Jones,et al.  The Statistical Design of EWMA Control Charts with Estimated Parameters , 2002 .

[41]  David M. Rocke Robust control charts , 1989 .

[42]  Boris Iglewicz,et al.  Trimmed Mean X̄ and R Charts , 2018 .

[43]  Marina Thottan,et al.  Anomaly detection in IP networks , 2003, IEEE Trans. Signal Process..

[44]  Ronald J. M. M. Does,et al.  Quality Quandaries: Improving Revenue by Attracting More Clients Online , 2015 .

[45]  Ronald J. M. M. Does,et al.  Statistical process control in industry; implementation and assurance of SPC , 1999 .

[46]  Fadel M. Megahed,et al.  Geometric Charts with Estimated Control Limits , 2013, Qual. Reliab. Eng. Int..

[47]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[48]  Sven Knoth,et al.  Accurate ARL computation for EWMA-S2 control charts , 2005, Stat. Comput..

[49]  Charles W. Champ,et al.  The Performance of Exponentially Weighted Moving Average Charts With Estimated Parameters , 2001, Technometrics.

[50]  G. Geoffrey Vining Technical Advice: Phase I and Phase II Control Charts , 2009 .

[51]  Saddam Akber Abbasi,et al.  On Sensitivity of EWMA Control Chart for Monitoring Process Dispersion , 2010 .

[52]  R. F.,et al.  Statistical Method from the Viewpoint of Quality Control , 1940, Nature.

[53]  Wilbert C.M. Kallenberg,et al.  Are estimated control charts in control? , 2001 .

[54]  Philippe Castagliola,et al.  Computational Statistics and Data Analysis an Ewma Chart for Monitoring the Process Standard Deviation When Parameters Are Estimated , 2022 .

[55]  William H. Woodall,et al.  A Control Chart for Preliminary Analysis of Individual Observations , 1996 .

[56]  Philippe Castagliola,et al.  Some Recent Developments on the Effects of Parameter Estimation on Control Charts , 2014, Qual. Reliab. Eng. Int..

[57]  Lawrence G. Tatum Robust estimation of the process standard deviation for control charts , 1997 .

[58]  Amirhossein Amiri,et al.  Change Point Estimation Methods for Control Chart Postsignal Diagnostics: A Literature Review , 2012, Qual. Reliab. Eng. Int..

[59]  Ronald J. M. M. Does,et al.  A Robust Standard Deviation Control Chart , 2012, Technometrics.

[60]  Douglas M. Hawkins,et al.  The CUSUM and the EWMA Head-to-Head , 2014 .

[61]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[62]  Ho-Soo Nam,et al.  A Robust EWMA Control Chart , 1999 .

[63]  Gemai Chen,et al.  THE MEAN AND STANDARD DEVIATION OF THE RUN LENGTH DISTRIBUTION OF X̄ CHARTS WHEN CONTROL LIMITS ARE ESTIMATED Gemai Chen , 2003 .

[64]  G. J. Janacek,et al.  Control charts based on medians , 1997 .

[65]  William H. Woodall,et al.  Performance Metrics for Surveillance Schemes , 2008 .

[66]  David M. Rocke,et al.  ARE ROBUST ESTIMATORS REALLY NECESSARY , 1982 .

[67]  Muhammad Riaz,et al.  CS‐EWMA Chart for Monitoring Process Dispersion , 2013, Qual. Reliab. Eng. Int..

[68]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[69]  K. E. Case,et al.  Development and Evaluation of Control Charts Using Exponentially Weighted Moving Averages , 1989 .

[70]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[71]  Stephen B. Vardeman,et al.  A brief tutorial on the estimation of the process standard deviation , 1999 .

[72]  Snigdhansu Chatterjee,et al.  Distribution-free cumulative sum control charts using bootstrap-based control limits , 2009, 0906.1421.

[73]  Charles P. Quesenberry,et al.  The Effect of Sample Size on Estimated Limits for and X Control Charts , 1993 .

[74]  William H. Woodall,et al.  The Performance of Bootstrap Control Charts , 1998 .

[75]  Jerald F. Lawless,et al.  Monitoring Warranty Claims With Cusums , 2012, Technometrics.

[76]  Axel Gandy,et al.  Guaranteed Conditional Performance of Control Charts via Bootstrap Methods , 2011, 1111.4180.

[77]  Abdel-Salam G. Abdel-Salam,et al.  The Performance of the Adaptive Exponentially Weighted Moving Average Control Chart with Estimated Parameters , 2013, Qual. Reliab. Eng. Int..

[78]  S. Crowder A simple method for studying run-length distribution of exponentially weighted moving average charts , 1987 .

[79]  Eugenio K. Epprecht,et al.  Estimating the Standard Deviation in Quality-Control Applications , 2010 .

[80]  Elsayed A. Elsayed,et al.  Design and Performance Analysis of the Exponentially Weighted Moving Average Mean Estimate for Processes Subject to Random Step Changes , 2002, Technometrics.

[81]  Jen Tang,et al.  Control Charts for Dependent and Independent Measurements Based on Bootstrap Methods , 1996 .

[82]  Eugenio K. Epprecht,et al.  Effect of the Amount of Phase I Data on the Phase II Performance of S2 and S Control Charts , 2015 .

[83]  Ronald J. M. M. Does,et al.  Guaranteed In-Control Performance for the Shewhart X and X Control Charts , 2017 .

[84]  Stephen V. Crowder,et al.  Design of Exponentially Weighted Moving Average Schemes , 1989 .

[85]  G. Box NON-NORMALITY AND TESTS ON VARIANCES , 1953 .

[86]  Bart L. MacCarthy,et al.  A review of non‐standard applications of statistical process control (SPC) charts , 2002 .

[87]  Ronald J. M. M. Does,et al.  Robust point location estimators for the EWMA control chart , 2016 .

[88]  Sven Knoth Control Charting Normal Variance – Reflections, Curiosities, and Recommendations , 2010 .

[89]  Eugenio K. Epprecht,et al.  Performance Comparisons of EWMA Control Chart Schemes , 2010 .

[90]  Min Zhang,et al.  Exponential CUSUM Charts with Estimated Control Limits , 2014, Qual. Reliab. Eng. Int..

[91]  Giovanna Capizzi,et al.  Phase I Distribution-Free Analysis of Univariate Data , 2013 .

[92]  William H. Woodall,et al.  The Difficulty in Designing Shewhart X̄ and X Control Charts with Estimated Parameters , 2015 .