Machine learning in individual claims reserving

Abstract Machine learning techniques make it feasible to calculate claims reserves on individual claims data. This paper illustrates how these techniques can be used by providing an explicit example in individual claims reserving.

[1]  Daniela M. Witten,et al.  An Introduction to Statistical Learning: with Applications in R , 2013 .

[2]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[3]  Katrien Antonio,et al.  Micro-level stochastic loss reserving for general insurance , 2012 .

[4]  G. McGuire,et al.  Individual Claim Loss Reserving Conditioned by Case Estimates , 2008, Annals of Actuarial Science.

[5]  M. Wüthrich,et al.  Understanding Reporting Delay in General Insurance , 2016 .

[6]  T. Therneau,et al.  An Introduction to Recursive Partitioning Using the RPART Routines , 2015 .

[7]  G. Samorodnitsky,et al.  Prediction of outstanding payments in a Poisson cluster model , 2011 .

[8]  Mario V. Wüthrich,et al.  Neural networks applied to chain–ladder reserving , 2018, European Actuarial Journal.

[9]  Jens Perch Nielsen,et al.  The Link Between Classical Reserving and Granular Reserving Through Double Chain Ladder and its Extensions , 2016 .

[10]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[11]  M. Denuit,et al.  INDIVIDUAL LOSS RESERVING WITH THE MULTIVARIATE SKEW NORMAL FRAMEWORK , 2013, ASTIN Bulletin: The Journal of the International Actuarial Association.

[12]  T. Mack Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates , 1993, ASTIN Bulletin.

[13]  Arthur Charpentier,et al.  Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective) , 2016, 1602.08773.

[14]  J. Franklin,et al.  The elements of statistical learning: data mining, inference and prediction , 2005 .

[15]  J. Nielsen,et al.  Double chain ladder, claims development inflation and zero-claims , 2015 .

[16]  Mario V. Wuthrich,et al.  Stochastic Claims Reserving Manual: Advances in Dynamic Modeling , 2015 .