3D face recognition using covariance based descriptors

Abstract In this paper, we propose a new 3D face recognition method based on covariance descriptors. Unlike feature-based vectors, covariance-based descriptors enable the fusion and the encoding of different types of features and modalities into a compact representation. The covariance descriptors are symmetric positive definite matrices which can be viewed as an inner product on the tangent space of ( S y m d + ) the manifold of Symmetric Positive Definite (SPD) matrices. In this article, we study geodesic distances on the S y m d + manifold and use them as metrics for 3D face matching and recognition. We evaluate the performance of the proposed method on the FRGCv2 and the GAVAB databases and demonstrate its superiority compared to other state of the art methods.

[1]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[2]  Zhizhou Wang,et al.  An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation , 2004, CVPR 2004.

[3]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[4]  Thomas Vetter,et al.  Face Recognition Based on Fitting a 3D Morphable Model , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Luuk J. Spreeuwers,et al.  Fast and Accurate 3D Face Recognition , 2011, International Journal of Computer Vision.

[6]  Rabia Jafri,et al.  A Survey of Face Recognition Techniques , 2009, J. Inf. Process. Syst..

[7]  Jim Austin,et al.  Three-dimensional face recognition: an eigensurface approach , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[8]  Mohammad H. Mahoor,et al.  Face recognition based on 3D ridge images obtained from range data , 2009, Pattern Recognit..

[9]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[10]  C. Villani Optimal Transport: Old and New , 2008 .

[11]  Tieniu Tan,et al.  A New Attempt to Fast Recognition Using 3D Eigenfaces , 2004 .

[12]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[13]  Patrick J. Flynn,et al.  A Region Ensemble for 3-D Face Recognition , 2008, IEEE Transactions on Information Forensics and Security.

[14]  Anuj Srivastava,et al.  Three-Dimensional Face Recognition Using Shapes of Facial Curves , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Yongsheng Gao,et al.  Face recognition across pose: A review , 2009, Pattern Recognit..

[16]  Maurício Pamplona Segundo,et al.  3D Face Recognition Using Simulated Annealing and the Surface Interpenetration Measure , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[19]  Larry S. Davis,et al.  Covariance discriminative learning: A natural and efficient approach to image set classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[21]  Mohammed Bennamoun,et al.  Keypoint Detection and Local Feature Matching for Textured 3D Face Recognition , 2007, International Journal of Computer Vision.

[22]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Maher Moakher,et al.  Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function , 2012 .

[24]  Hao Zhang,et al.  Expression-insensitive 3D face recognition using sparse representation , 2009, CVPR.

[25]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[26]  Andrea F. Abate,et al.  2D and 3D face recognition: A survey , 2007, Pattern Recognit. Lett..

[27]  T. Theoharis,et al.  Partial matching of interpose 3D facial data for face recognition , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[28]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Andrzej Cichocki,et al.  Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities , 2010, Entropy.

[30]  Suvrit Sra,et al.  A new metric on the manifold of kernel matrices with application to matrix geometric means , 2012, NIPS.

[31]  Patrick J. Flynn,et al.  A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition , 2006, Comput. Vis. Image Underst..

[32]  Maria L. Rizzo,et al.  Brownian distance covariance , 2009, 1010.0297.

[33]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[34]  Patrik Kamencay,et al.  2D-3D Face Recognition Method Basedon a Modified CCA-PCA Algorithm , 2014 .

[35]  Hassen Drira,et al.  3D Face Recognition under Expressions, Occlusions, and Pose Variations , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Hamid Laga,et al.  Covariance Descriptors for 3D Shape Matching and Retrieval , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Xiaoou Tang,et al.  Robust 3D Face Recognition by Local Shape Difference Boosting , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Michael G. Strintzis,et al.  Use of depth and colour eigenfaces for face recognition , 2003, Pattern Recognit. Lett..

[39]  Di Huang,et al.  3-D Face Recognition Using eLBP-Based Facial Description and Local Feature Hybrid Matching , 2012, IEEE Transactions on Information Forensics and Security.

[40]  Alan C. Bovik,et al.  Anthropometric 3D Face Recognition , 2010, International Journal of Computer Vision.

[41]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[42]  Anoop Cherian,et al.  Efficient similarity search for covariance matrices via the Jensen-Bregman LogDet Divergence , 2011, 2011 International Conference on Computer Vision.