Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: therapeutic perspectives.

[1]  M. Pistis,et al.  Sex-specific tonic 2-arachidonoylglycerol signaling at inhibitory inputs onto dopamine neurons of Lister Hooded rats , 2013, Front. Integr. Neurosci..

[2]  L. Vanderschuren,et al.  Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity , 2013, Molecular Psychiatry.

[3]  S. Colombo,et al.  Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. , 2013, Biochemical pharmacology.

[4]  M. Pistis,et al.  Investigation of endocannabinoid system genes suggests association between peroxisome proliferator activator receptor-α gene (PPARA) and schizophrenia , 2013, European Neuropsychopharmacology.

[5]  R. Perera,et al.  Pharmacological interventions for smoking cessation: an overview and network meta-analysis. , 2013, The Cochrane database of systematic reviews.

[6]  M. Pistis,et al.  PPAR-Alpha Agonists as Novel Antiepileptic Drugs: Preclinical Findings , 2013, PloS one.

[7]  Nora D. Volkow,et al.  The Addictive Dimensionality of Obesity , 2013, Biological Psychiatry.

[8]  A. Tapper,et al.  Neuronal Nicotinic Acetylcholine Receptors: Common Molecular Substrates of Nicotine and Alcohol Dependence , 2013, Front. Psychiatry.

[9]  M. Pistis,et al.  PPARα Regulates Cholinergic-Driven Activity of Midbrain Dopamine Neurons via a Novel Mechanism Involving α7 Nicotinic Acetylcholine Receptors , 2013, The Journal of Neuroscience.

[10]  F. Leslie,et al.  Nicotinic Receptors in Addiction Pathways , 2013, Molecular Pharmacology.

[11]  M. Pistis,et al.  Physiological Role of Peroxisome Proliferator-Activated Receptors Type Alpha on Dopamine Systems , 2013 .

[12]  N. Volkow,et al.  Obesity and addiction: neurobiological overlaps , 2013, Obesity reviews : an official journal of the International Association for the Study of Obesity.

[13]  M. Pistis,et al.  Hub and switches: endocannabinoid signalling in midbrain dopamine neurons , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  L. Trudeau,et al.  Neurotensin inhibits glutamate-mediated synaptic inputs onto ventral tegmental area dopamine neurons through the release of the endocannabinoid 2-AG , 2012, Neuropharmacology.

[15]  R. Bordet,et al.  The PPARα Agonist Fenofibrate Reduces Prepulse Inhibition Disruption in a Neurodevelopmental Model of Schizophrenia , 2012, Schizophrenia research and treatment.

[16]  T. Comery,et al.  Discovery of a novel alpha-7 nicotinic acetylcholine receptor agonist series and characterization of the potent, selective, and orally efficacious agonist 5-(4-acetyl[1,4]diazepan-1-yl)pentanoic acid [5-(4-methoxyphenyl)-1H-pyrazol-3-yl] amide (SEN15924, WAY-361789). , 2012, Journal of medicinal chemistry.

[17]  M. Bencherif,et al.  α7 neuronal nicotinic receptor agonist (TC-7020) reverses increased striatal dopamine release during acoustic PPI testing in a transgenic mouse model of schizophrenia , 2012, Schizophrenia Research.

[18]  M. Pistis,et al.  Novel Use of a Lipid-Lowering Fibrate Medication to Prevent Nicotine Reward and Relapse: Preclinical Findings , 2012, Neuropsychopharmacology.

[19]  W. N. Green,et al.  Nicotine-Induced Upregulation of Native Neuronal Nicotinic Receptors Is Caused by Multiple Mechanisms , 2012, The Journal of Neuroscience.

[20]  M. Pistis,et al.  Endocannabinoids and the Processing of Value-Related Signals , 2011, Front. Pharmacol..

[21]  D. Murawa,et al.  Comparison of the pharmacokinetics of paracetamol from two generic products in patients after total gastric resection , 2011, Pharmacological reports : PR.

[22]  D. Deutsch,et al.  Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways. , 2011, Biochimica et biophysica acta.

[23]  S. Umathe,et al.  Involvement of endocannabinoids in antidepressant and anti-compulsive effect of fluoxetine in mice , 2011, Behavioural Brain Research.

[24]  Qing-song Liu,et al.  Extracellular Signal-Regulated Kinase Signaling in the Ventral Tegmental Area Mediates Cocaine-Induced Synaptic Plasticity and Rewarding Effects , 2011, The Journal of Neuroscience.

[25]  N. Benowitz,et al.  Treatment of nicotine addiction: present therapeutic options and pipeline developments. , 2011, Trends in pharmacological sciences.

[26]  J. Lacaille,et al.  The endocannabinoid 2‐arachidonoylglycerol inhibits long‐term potentiation of glutamatergic synapses onto ventral tegmental area dopamine neurons in mice , 2011, The European journal of neuroscience.

[27]  M. Pistis,et al.  Blockade of Nicotine Reward and Reinstatement by Activation of Alpha-Type Peroxisome Proliferator-Activated Receptors , 2011, Biological Psychiatry.

[28]  N. Volkow,et al.  Reward, dopamine and the control of food intake: implications for obesity , 2011, Trends in Cognitive Sciences.

[29]  Die Zhang,et al.  Mechanisms Involved in Systemic Nicotine-Induced Glutamatergic Synaptic Plasticity on Dopamine Neurons in the Ventral Tegmental Area , 2010, The Journal of Neuroscience.

[30]  P. Cowen,et al.  Reduced neural response to reward following 7 days treatment with the cannabinoid CB1 antagonist rimonabant in healthy volunteers. , 2010, The international journal of neuropsychopharmacology.

[31]  T. Coleman,et al.  A systematic review of the effectiveness of smoking relapse prevention interventions for abstinent smokers. , 2010, Addiction.

[32]  M. Pistis,et al.  The endocannabinoid system and nondrug rewarding behaviours , 2010, Experimental Neurology.

[33]  S. Haj-Dahmane,et al.  Regulation of plasticity of glutamate synapses by endocannabinoids and the cyclic‐AMP/protein kinase A pathway in midbrain dopamine neurons , 2010, The Journal of physiology.

[34]  J. Changeux,et al.  Nicotine addiction and nicotinic receptors: lessons from genetically modified mice , 2010, Nature Reviews Neuroscience.

[35]  M. Pistis,et al.  PRECLINICAL STUDY: FULL ARTICLE: Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR‐α nuclear receptors , 2010, Addiction biology.

[36]  M. Pistis,et al.  From surface to nuclear receptors: the endocannabinoid family extends its assets. , 2010, Current medicinal chemistry.

[37]  V. Tedesco,et al.  Nicotinic Acetylcholine Receptors in the Mesolimbic Pathway: Primary Role of Ventral Tegmental Area α6β2* Receptors in Mediating Systemic Nicotine Effects on Dopamine Release, Locomotion, and Reinforcement , 2010, The Journal of Neuroscience.

[38]  R. Wise Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction , 2009, Trends in Neurosciences.

[39]  Michele Zoli,et al.  Structural and functional diversity of native brain neuronal nicotinic receptors. , 2009, Biochemical pharmacology.

[40]  L. Vallée,et al.  Fenofibrate, a peroxisome proliferator–activated receptor‐α agonist, exerts anticonvulsive properties , 2009, Epilepsia.

[41]  P. Robledo,et al.  Oleoylethanolamide exerts partial and dose-dependent neuroprotection of substantia nigra dopamine neurons , 2009, Neuropharmacology.

[42]  Qing-song Liu,et al.  D2 Dopamine Receptor Activation Facilitates Endocannabinoid-Mediated Long-Term Synaptic Depression of GABAergic Synaptic Transmission in Midbrain Dopamine Neurons via cAMP-Protein Kinase A Signaling , 2008, The Journal of Neuroscience.

[43]  M. Pistis,et al.  Endogenous Fatty Acid Ethanolamides Suppress Nicotine-Induced Activation of Mesolimbic Dopamine Neurons through Nuclear Receptors , 2008, The Journal of Neuroscience.

[44]  R. Mangieri,et al.  Fatty Acid Amide Hydrolase Inhibition Heightens Anandamide Signaling Without Producing Reinforcing Effects in Primates , 2008, Biological Psychiatry.

[45]  J. Changeux,et al.  Crucial Role of α4 and α6 Nicotinic Acetylcholine Receptor Subunits from Ventral Tegmental Area in Systemic Nicotine Self-Administration , 2008, The Journal of Neuroscience.

[46]  D. Piomelli,et al.  Inhibition of Anandamide Hydrolysis by Cyclohexyl Carbamic Acid 3′-Carbamoyl-3-yl Ester (URB597) Reverses Abuse-Related Behavioral and Neurochemical Effects of Nicotine in Rats , 2008, Journal of Pharmacology and Experimental Therapeutics.

[47]  S. Goldberg,et al.  The endocannabinoid system: a new molecular target for the treatment of tobacco addiction. , 2008, CNS & neurological disorders drug targets.

[48]  C. D. Fowler,et al.  Subtypes of nicotinic acetylcholine receptors in nicotine reward, dependence, and withdrawal: evidence from genetically modified mice , 2008, Behavioural pharmacology.

[49]  Thomas J. Raub,et al.  Discovery of N-[(3R,5R)-1-azabicyclo[3.2.1]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide as an agonist of the alpha7 nicotinic acetylcholine receptor: in vitro and in vivo activity. , 2008, Bioorganic & medicinal chemistry letters.

[50]  A. Markou,et al.  Affective and somatic aspects of spontaneous and precipitated nicotine withdrawal in C57BL/6J and BALB/cByJ mice , 2008, Neuropharmacology.

[51]  S. Goldberg,et al.  Blocking cannabinoid CB1 receptors for the treatment of nicotine dependence: insights from pre‐clinical and clinical studies , 2008, Addiction biology.

[52]  M. Filip,et al.  Activation of endocannabinoid transmission induces antidepressant-like effects in rats. , 2008, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.

[53]  V. Marzo,et al.  Targeting the endocannabinoid system: to enhance or reduce? , 2008, Nature Reviews Drug Discovery.

[54]  N L Benowitz,et al.  Clinical Pharmacology of Nicotine: Implications for Understanding, Preventing, and Treating Tobacco Addiction , 2008, Clinical pharmacology and therapeutics.

[55]  N. Benowitz Neurobiology of nicotine addiction: implications for smoking cessation treatment. , 2008, The American journal of medicine.

[56]  C. Hillard,et al.  Endocannabinoid Signaling Mediates Cocaine-Induced Inhibitory Synaptic Plasticity in Midbrain Dopamine Neurons , 2008, The Journal of Neuroscience.

[57]  B. Cravatt,et al.  A Comprehensive Profile of Brain Enzymes that Hydrolyze the Endocannabinoid 2‐Arachidonoylglycerol , 2007, Chemistry & biology.

[58]  M. Pistis,et al.  Endocannabinoid Signaling in Midbrain Dopamine Neurons: More than Physiology? , 2007, Current neuropharmacology.

[59]  Robin Christensen,et al.  Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials , 2007, The Lancet.

[60]  R. Mangieri,et al.  Antidepressant-like Activity of the Fatty Acid Amide Hydrolase Inhibitor URB597 in a Rat Model of Chronic Mild Stress , 2007, Biological Psychiatry.

[61]  T. Cassano,et al.  Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: Role of CB1 and TRPV1 receptors , 2007, Experimental Neurology.

[62]  S. O'Sullivan,et al.  Cannabinoids go nuclear: evidence for activation of peroxisome proliferator‐activated receptors , 2007, British journal of pharmacology.

[63]  R. Malenka,et al.  Synaptic plasticity and addiction , 2007, Nature Reviews Neuroscience.

[64]  Kyle S. Smith,et al.  Endocannabinoid Hedonic Hotspot for Sensory Pleasure: Anandamide in Nucleus Accumbens Shell Enhances ‘Liking’ of a Sweet Reward , 2007, Neuropsychopharmacology.

[65]  Candice L. Garwood,et al.  Emerging pharmacotherapies for smoking cessation. , 2007, American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists.

[66]  R. Tyndale,et al.  The fatty acid amide hydrolase C385A (P129T) missense variant in cannabis users: Studies of drug use and dependence in caucasians , 2007, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[67]  R. Drucker-Colín,et al.  Effects of the fatty acid amide hydrolase inhibitor URB597 on the sleep-wake cycle, c-Fos expression and dopamine levels of the rat. , 2007, European journal of pharmacology.

[68]  G. Bernardi,et al.  N-Arachidonoyl-Dopamine Tunes Synaptic Transmission onto Dopaminergic Neurons by Activating both Cannabinoid and Vanilloid Receptors , 2007, Neuropsychopharmacology.

[69]  R. Tyndale,et al.  Non-nicotinic therapies for smoking cessation. , 2007, Annual review of pharmacology and toxicology.

[70]  A. Hohmann,et al.  Rapid Broad-Spectrum Analgesia through Activation of Peroxisome Proliferator-Activated Receptor-α , 2006, Journal of Pharmacology and Experimental Therapeutics.

[71]  M. Pistis,et al.  Protective activation of the endocannabinoid system during ischemia in dopamine neurons , 2006, Neurobiology of Disease.

[72]  M. Zoli,et al.  Brain nicotinic acetylcholine receptors: native subtypes and their relevance. , 2006, Trends in pharmacological sciences.

[73]  A. Brody Functional brain imaging of tobacco use and dependence. , 2006, Journal of psychiatric research.

[74]  Jason Gong,et al.  Efficacy of Varenicline, an 42 Nicotinic Acetylcholine Receptor Partial Agonist, vs Placebo or Sustained-Release Bupropion for Smoking Cessation A Randomized Controlled Trial , 2006 .

[75]  Philippe Faure,et al.  Hierarchical Control of Dopamine Neuron-Firing Patterns by Nicotinic Receptors , 2006, Neuron.

[76]  Daniele Piomelli,et al.  Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). , 2006, CNS drug reviews.

[77]  P. Garris,et al.  Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  T. Cassano,et al.  Correction for Gobbi et al., Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Changeux,et al.  Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors , 2005, Nature.

[80]  J. Yakel,et al.  Desensitization of nicotinic ACh receptors: shaping cholinergic signaling , 2005, Trends in Neurosciences.

[81]  A. Gerber,et al.  Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH) , 2005, International Journal of Obesity.

[82]  K. Mackie,et al.  Concurrent Stimulation of Cannabinoid CB1 and Dopamine D2 Receptors Enhances Heterodimer Formation: A Mechanism for Receptor Cross-Talk? , 2005, Molecular Pharmacology.

[83]  J. Tepper,et al.  Endogenous Hydrogen Peroxide Regulates the Excitability of Midbrain Dopamine Neurons via ATP-Sensitive Potassium Channels , 2005, The Journal of Neuroscience.

[84]  S. Gaetani,et al.  Characterization of the Fatty Acid Amide Hydrolase Inhibitor Cyclohexyl Carbamic Acid 3′-Carbamoyl-biphenyl-3-yl Ester (URB597): Effects on Anandamide and Oleoylethanolamide Deactivation , 2005, Journal of Pharmacology and Experimental Therapeutics.

[85]  D. Piomelli,et al.  The Nuclear Receptor Peroxisome Proliferator-Activated Receptor-α Mediates the Anti-Inflammatory Actions of Palmitoylethanolamide , 2005, Molecular Pharmacology.

[86]  S. Mangiavacchi,et al.  Psychomotor stimulants and neuronal plasticity , 2004, Neuropharmacology.

[87]  C. Lupica,et al.  Independent Presynaptic and Postsynaptic Mechanisms Regulate Endocannabinoid Signaling at Multiple Synapses in the Ventral Tegmental Area , 2004, The Journal of Neuroscience.

[88]  M. Pistis,et al.  Prefrontal Cortex Stimulation Induces 2-Arachidonoyl-Glycerol-Mediated Suppression of Excitation in Dopamine Neurons , 2004, The Journal of Neuroscience.

[89]  M. E. Corcoran,et al.  Selective Antiepileptic Effects of N‐Palmitoylethanolamide, a Putative Endocannabinoid , 2004, Epilepsia.

[90]  B. Cravatt,et al.  Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use. , 2004, Human molecular genetics.

[91]  L. Rojas,et al.  Nicotine-induced Up-regulation and Desensitization of α4β2 Neuronal Nicotinic Receptors Depend on Subunit Ratio* , 2004, Journal of Biological Chemistry.

[92]  R. Malenka,et al.  Acute and Chronic Cocaine-Induced Potentiation of Synaptic Strength in the Ventral Tegmental Area: Electrophysiological and Behavioral Correlates in Individual Rats , 2004, The Journal of Neuroscience.

[93]  D. Piomelli,et al.  Oleoylethanolamide Stimulates Lipolysis by Activating the Nuclear Receptor Peroxisome Proliferator-activated Receptor α (PPAR-α)* , 2004, Journal of Biological Chemistry.

[94]  M. Pistis,et al.  Endocannabinoids Mediate Presynaptic Inhibition of Glutamatergic Transmission in Rat Ventral Tegmental Area Dopamine Neurons through Activation of CB1 Receptors , 2004, The Journal of Neuroscience.

[95]  Paul Newhouse,et al.  Nicotine and nicotinic receptor involvement in neuropsychiatric disorders. , 2003, Current topics in medicinal chemistry.

[96]  S. Gaetani,et al.  Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α , 2003, Nature.

[97]  M. Horne,et al.  Neuronal nicotinic receptors: insights gained from gene knockout an knocking mutant mice , 2003, Cellular and Molecular Life Sciences CMLS.

[98]  R. Malenka,et al.  Drugs of Abuse and Stress Trigger a Common Synaptic Adaptation in Dopamine Neurons , 2003, Neuron.

[99]  B. Cravatt,et al.  A missense mutation in human fatty acid amide hydrolase associated with problem drug use , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[100]  H. Mansvelder,et al.  Synaptic Mechanisms Underlie Nicotine-Induced Excitability of Brain Reward Areas , 2002, Neuron.

[101]  B. Sutor,et al.  Neuronal nicotinic acetylcholine receptors and autosomal dominant nocturnal frontal lobe epilepsy: a critical review , 2001, Pflügers Archiv.

[102]  S. Vandevoorde,et al.  Anticonvulsant Activity of N‐Palmitoylethanolamide, a Putative Endocannabinoid, in Mice , 2001, Epilepsia.

[103]  Michele Zoli,et al.  Molecular and Physiological Diversity of Nicotinic Acetylcholine Receptors in the Midbrain Dopaminergic Nuclei , 2001, The Journal of Neuroscience.

[104]  R. Freedman,et al.  The α7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia , 2000, Journal of Chemical Neuroanatomy.

[105]  D. Deutsch,et al.  The fatty acid amide hydrolase (FAAH). , 2000, Prostaglandins, leukotrienes, and essential fatty acids.

[106]  A. Ballabio,et al.  The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy , 2000, Nature Genetics.

[107]  P. Olausson,et al.  Nicotinic mechanisms involved in the dopamine activating and reinforcing properties of ethanol , 2000, Behavioural Brain Research.

[108]  H. Mansvelder,et al.  Long-Term Potentiation of Excitatory Inputs to Brain Reward Areas by Nicotine , 2000, Neuron.

[109]  J. Yakel,et al.  Nicotinic receptors in the brain: correlating physiology with function , 1999, Trends in Neurosciences.

[110]  D. Lambert,et al.  The palmitoylethanolamide and oleamide enigmas : are these two fatty acid amides cannabimimetic? , 1999, Current medicinal chemistry.

[111]  N. Benowitz,et al.  Suppression of nicotine intake during ad libitum cigarette smoking by high-dose transdermal nicotine. , 1998, The Journal of pharmacology and experimental therapeutics.

[112]  J. Peters,et al.  Altered Constitutive Expression of Fatty Acid-metabolizing Enzymes in Mice Lacking the Peroxisome Proliferator-activated Receptor α (PPARα)* , 1998, The Journal of Biological Chemistry.

[113]  J. Changeux,et al.  Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine , 1998, Nature.

[114]  John T. Williams,et al.  Nicotine activates and desensitizes midbrain dopamine neurons , 1997, Nature.

[115]  O. Steinlein,et al.  Possible association of a silent polymorphism in the neuronal nicotinic acetylcholine receptor subunit alpha4 with common idiopathic generalized epilepsies. , 1997, American journal of medical genetics.

[116]  E X Albuquerque,et al.  Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. , 1997, The Journal of pharmacology and experimental therapeutics.

[117]  Stephen P. Mayfield,et al.  Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides , 1996, Nature.

[118]  Z. Vogel,et al.  Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. , 1995, Biochemical pharmacology.

[119]  J P Changeux,et al.  Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[120]  J. Patrick,et al.  Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  D. Gibson,et al.  Isolation and structure of a brain constituent that binds to the cannabinoid receptor. , 1992, Science.

[122]  G. Di Chiara,et al.  Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[123]  G. Gessa,et al.  Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine. , 1987, European journal of pharmacology.

[124]  P. Clarke,et al.  Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  N. Volkow,et al.  Food and drug reward: overlapping circuits in human obesity and addiction. , 2012, Current topics in behavioral neurosciences.

[126]  J. Mikkelsen,et al.  Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology. , 2010, Current pharmaceutical design.

[127]  E. Albuquerque,et al.  Mammalian nicotinic acetylcholine receptors: from structure to function. , 2009, Physiological reviews.

[128]  Masahiko Watanabe,et al.  Endocannabinoid-mediated control of synaptic transmission. , 2009, Physiological reviews.

[129]  G. Griebel,et al.  SSR180711, a Novel Selective α7 Nicotinic Receptor Partial Agonist: (II) Efficacy in Experimental Models Predictive of Activity Against Cognitive Symptoms of Schizophrenia , 2007, Neuropsychopharmacology.

[130]  Josue P. Keely,et al.  Shape of the relapse curve and long-term abstinence among untreated smokers. , 2004, Addiction.

[131]  D. Bertrand,et al.  Nicotinic acetylcholine receptors: from structure to brain function. , 2003, Reviews of physiology, biochemistry and pharmacology.

[132]  A. Karlin Ion channel structure: Emerging structure of the Nicotinic Acetylcholine receptors , 2002, Nature Reviews Neuroscience.

[133]  N. Volkow,et al.  Imaging the neurochemistry of nicotine actions: studies with positron emission tomography. , 1999, Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco.

[134]  L. Role,et al.  Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. , 1995, Annual review of physiology.

[135]  T. Sugiura,et al.  2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. , 1995, Biochemical and biophysical research communications.

[136]  R. Wise,et al.  Brain dopamine and reward. , 1989, Annual review of psychology.