A Note on the Diagonalization of the Discrete Fourier Transform

Following the approach developed by S. Gurevich and R. Hadani, an analytical formula of the canonical basis of the DFT is given for the case $N=p$ where $p$ is a prime number and $p\equiv 1$ (mod 4).

[1]  Shamgar Gurevich,et al.  On Some Deterministic Dictionaries Supporting Sparsity , 2008, ArXiv.

[2]  Hofreiter Moderne Algebra , 1941 .

[3]  Shamgar Gurevich,et al.  The Finite Harmonic Oscillator and Its Applications to Sequences, Communication, and Radar , 2008, IEEE Transactions on Information Theory.

[4]  A. Robert Calderbank,et al.  The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..

[5]  R. Howe,et al.  Nice error bases, mutually unbiased bases, induced representations, the Heisenberg group and finite geometries , 2005 .

[6]  A. Weil Sur certains groupes d'opérateurs unitaires , 1964 .

[7]  Randall R. Holmes Linear Representations of Finite Groups , 2008 .

[8]  B. Dickinson,et al.  Eigenvectors and functions of the discrete Fourier transform , 1982 .

[9]  J. McClellan,et al.  Eigenvalue and eigenvector decomposition of the discrete Fourier transform , 1972 .

[10]  Shamgar Gurevich,et al.  Group Representation Design of Digital Signals and Sequences , 2008, SETA.

[11]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[12]  Magdy T. Hanna,et al.  Hermite-Gaussian-like eigenvectors of the discrete Fourier transform matrix based on the singular-value decomposition of its orthogonal projection matrices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Shamgar Gurevich,et al.  On the diagonalization of the discrete Fourier transform , 2008, ArXiv.

[14]  K. Wolf,et al.  Fractional Fourier-Kravchuk transform , 1997 .

[15]  Cagatay Candan,et al.  The discrete fractional Fourier transform , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[16]  Cagatay Candan,et al.  The discrete fractional Fourier transform , 2000, IEEE Trans. Signal Process..

[17]  Guang Gong,et al.  New Sequences Design From Weil Representation With Low Two-Dimensional Correlation in Both Time and Phase Shifts , 2008, IEEE Transactions on Information Theory.