Neural Multi-step Reasoning for Question Answering on Semi-structured Tables

We explore neural network models for answering multi-step reasoning questions that operate on semi-structured tables. Challenges arise from deep logical compositionality and domain openness. Our approach is weakly supervised, trained on question-answer-table triples. It generates human readable logical forms from natural language questions, which are then ranked based on word and character convolutional neural networks. A model ensemble achieved at the moment of publication state-of-the-art score on the WikiTableQuestions dataset.

[1]  Grey Giddins,et al.  Statistics , 2016, The Journal of hand surgery, European volume.

[2]  Alexander M. Rush,et al.  Character-Aware Neural Language Models , 2015, AAAI.

[3]  Martín Abadi,et al.  Learning a Natural Language Interface with Neural Programmer , 2016, ICLR.

[4]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[5]  Emily Denton,et al.  User Conditional Hashtag Prediction for Images , 2015, KDD.

[6]  Xiang Zhang,et al.  Character-level Convolutional Networks for Text Classification , 2015, NIPS.

[7]  Jonathan Berant,et al.  Semantic Parsing via Paraphrasing , 2014, ACL.

[8]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[9]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[10]  Jason Weston,et al.  Open Question Answering with Weakly Supervised Embedding Models , 2014, ECML/PKDD.

[11]  Mark Steedman,et al.  Large-scale Semantic Parsing without Question-Answer Pairs , 2014, TACL.

[12]  Jason Weston,et al.  Question Answering with Subgraph Embeddings , 2014, EMNLP.

[13]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[14]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[15]  Percy Liang,et al.  Compositional Semantic Parsing on Semi-Structured Tables , 2015, ACL.

[16]  Dan Klein,et al.  Learning Dependency-Based Compositional Semantics , 2011, CL.

[17]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[18]  Jonathan Berant,et al.  Building a Semantic Parser Overnight , 2015, ACL.

[19]  Ming Zhou,et al.  Question Answering over Freebase with Multi-Column Convolutional Neural Networks , 2015, ACL.

[20]  Eduard H. Hovy,et al.  Tables as Semi-structured Knowledge for Question Answering , 2016, ACL.

[21]  Joachim Bingel,et al.  Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics , 2016 .

[22]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[23]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[24]  Oren Etzioni,et al.  Combining Retrieval, Statistics, and Inference to Answer Elementary Science Questions , 2016, AAAI.

[25]  Percy Liang,et al.  Lambda Dependency-Based Compositional Semantics , 2013, ArXiv.

[26]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[27]  Zhengdong Lu,et al.  Neural Enquirer: Learning to Query Tables in Natural Language , 2016, IEEE Data Eng. Bull..

[28]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[29]  Eunsol Choi,et al.  Scaling Semantic Parsers with On-the-Fly Ontology Matching , 2013, EMNLP.