Space–time POD based computational vademecums for parametric studies: application to thermo-mechanical problems

[1]  Alain Combescure,et al.  Efficient hyper reduced-order model (HROM) for parametric studies of the 3D thermo-elasto-plastic calculation , 2015 .

[2]  David Néron,et al.  Virtual charts of solutions for parametrized nonlinear equations , 2014 .

[3]  A. Huespe,et al.  High-performance model reduction techniques in computational multiscale homogenization , 2014 .

[4]  Elías Cueto,et al.  PGD-Based Modeling of Materials, Structures and Processes , 2014 .

[5]  David Dureisseix,et al.  A multiscale large time increment/FAS algorithm with time‐space model reduction for frictional contact problems , 2014 .

[6]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[7]  Pierre Ladevèze,et al.  Virtual charts for shape optimization of structures , 2013 .

[8]  S Niroomandi,et al.  Real‐time simulation of biological soft tissues: a PGD approach , 2013, International journal for numerical methods in biomedical engineering.

[9]  A. Ammar,et al.  Space–time proper generalized decompositions for the resolution of transient elastodynamic models , 2013 .

[10]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[11]  Adrien Leygue,et al.  Proper Generalized Decomposition based dynamic data-driven control of thermal processes ☆ , 2012 .

[12]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[13]  P Kerfriden,et al.  Bridging Proper Orthogonal Decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems. , 2011, Computer methods in applied mechanics and engineering.

[14]  Francisco Chinesta,et al.  On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition , 2010, Math. Comput. Simul..

[15]  Thomas Böhlke,et al.  Three‐dimensional finite element implementation of the nonuniform transformation field analysis , 2010 .

[16]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[17]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[18]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[19]  Siamak Niroomandi,et al.  Model order reduction for hyperelastic materials , 2010 .

[20]  F. Chinesta,et al.  Real-time deformable models of non-linear tissues by model reduction techniques , 2008, Comput. Methods Programs Biomed..

[21]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[22]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[23]  Manuel Laso,et al.  On the reduction of stochastic kinetic theory models of complex fluids , 2007 .

[24]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[25]  Julien Yvonnet,et al.  The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..

[26]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[27]  Michael Werman,et al.  Affine Invariance Revisited , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[28]  Francisco Chinesta,et al.  On the Reduction of Kinetic Theory Models Related to Finitely Extensible Dumbbells , 2006 .

[29]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[30]  Anthony T. Patera,et al.  A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations , 2002, J. Sci. Comput..

[31]  Yvon Maday,et al.  A Reduced-Basis Element Method , 2002, J. Sci. Comput..

[32]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[33]  P. Michaleris,et al.  Optimization of thermal processes using an Eulerian formulation and application in laser surface hardening , 2000 .

[34]  Daniel A. Tortorelli,et al.  A displacement-based reference frame formulation for steady-state thermo-elasto-plastic material processes , 1999 .

[35]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[36]  A. Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[37]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry: THE BOUNDARY LAYER , 1996 .

[38]  J. Goldak,et al.  Modelling the Evolution of Microstructure in the Heat-Affected Zone of Steady State Welds , 1993 .

[39]  Helmuth Späth,et al.  Two-dimensional spline interpolation algorithms , 1993 .

[40]  C. D. Boor,et al.  Computational aspects of polynomial interpolation in several variables , 1992 .

[41]  Pierre Ladevèze,et al.  A new approach in non‐linear mechanics: The large time increment method , 1990 .

[42]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[43]  Adrien Leygue,et al.  Vademecum‐based GFEM (V‐GFEM): optimal enrichment for transient problems , 2016 .

[44]  A. Huerta,et al.  Parametric solutions involving geometry: A step towards efficient shape optimization , 2014 .

[45]  David Néron,et al.  A model reduction technique based on the PGD for elastic-viscoplastic computational analysis , 2013 .

[46]  Siamak Niroomandi,et al.  Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models , 2012, Comput. Methods Programs Biomed..

[47]  Francisco Chinesta,et al.  Alleviating mesh constraints : Model reduction, parallel time integration and high resolution homogenization , 2008 .

[48]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[49]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[50]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[51]  P. Absil,et al.  Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .

[52]  P. Ladevèze,et al.  A large time increment approach for cyclic viscoplasticity , 1993 .

[53]  Jean-Michel Bergheau,et al.  Three-Dimensional Simulation of a Laser Surface Treatment Through Steady State Computation in the Heat Source’s Comoving Frame , 1992 .

[54]  P. Ladevèze,et al.  Sur une famille d'algorithmes en mécanique des structures , 1985 .

[55]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[56]  M. Loève Probability theory : foundations, random sequences , 1955 .

[57]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[58]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .