Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937

The bacterium Erwinia chrysanthemi, which causes soft rot disease on various plants, is able to use pectin as a carbon source for growth. Knowledge of the critical step in pectin catabolism which allows the entry of pectic oligomers into the cells is scarce. We report here the first example of a transport system involved in the uptake of pectic oligomers. The TogMNAB transporter of E. chrysanthemi is a member of the ATP‐binding cassette (ABC) superfamily. TogM and TogN are homologous to the inner membrane components, TogA exhibits the signature of ABC ATPases and TogB shows similarity with periplasmic ligand‐binding proteins. The TogMNAB transporter is a new member of the carbohydrate uptake transporter‐1 family (CUT1, TC no. 3.1.1), which is specialized in the transport of complex sugars. The four genes, togM, togN, togA and togB, are apparently co‐transcribed in a large operon which also includes the pectate lyase gene pelW. The transcription of the tog operon is induced in the presence of pectic derivatives and is affected by catabolite repression. It is controlled by the KdgR repressor and the CRP activator. The TogMNAB system is able to provide Escherichia coli with the ability to transport oligogalacturonides. In E. chrysanthemi, the TogMNAB system seems to play a major role in switching on the induction of pectin catabolism. TogB also acts as a specific receptor for chemotaxis towards oligogalacturonides. The decreased capacity of maceration of a togM mutant indicates the importance of transport and/or attraction of oligogalacturonides for E. chrysanthemi pathogenicity.

[1]  B. Bukau,et al.  Osmoregulation of the maltose regulon in Escherichia coli , 1986, Journal of bacteriology.

[2]  J. V. Hurley,et al.  Chemotaxis , 2005, Infection.

[3]  V. Shevchik,et al.  Analysis of three clustered polygalacturonase genes in Erwinia chrysanthemi 3937 revealed an anti‐repressor function for the PecS regulator , 1999, Molecular microbiology.

[4]  J. Benen,et al.  Characterization of the Exopolygalacturonate Lyase PelX of Erwinia chrysanthemi 3937 , 1999, Journal of bacteriology.

[5]  J. Ferretti,et al.  A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. , 1992, The Journal of biological chemistry.

[6]  A. Collmer,et al.  Impaired induction and self-catabolite repression of extracellular pectate lyase in Erwinia chrysanthemi mutants deficient in oligogalacturonide lyase. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[7]  L. Ingram,et al.  Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemi EC16 , 1992, Journal of bacteriology.

[8]  M. S. San Francisco,et al.  Uptake of galacturonic acid in Erwinia chrysanthemi EC16 , 1993, Journal of bacteriology.

[9]  G. Condemine,et al.  Specific interactions of Erwinia chrysanthemi KdgR repressor with different operators of genes involved in pectinolysis. , 1994, Journal of molecular biology.

[10]  G. Condemine,et al.  2-keto-3-deoxygluconate transport system in Erwinia chrysanthemi , 1987, Journal of bacteriology.

[11]  W. Nasser,et al.  Characterization of kdgR, a gene of Erwinia chrysanthemi that regulates pectin degradation , 1991, Molecular microbiology.

[12]  J. Robert-Baudouy,et al.  pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi , 1994, Molecular microbiology.

[13]  A. Toussaint,et al.  Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis. , 1982, Plasmid.

[14]  M. Boccara,et al.  Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937 , 1995, Molecular microbiology.

[15]  M. S. Francisco,et al.  Digalacturonic acid uptake in Erwinia chrysanthemi , 1996 .

[16]  M. S. Francisco,et al.  Cloning of a galacturonic acid uptake gene from Erwinia chrysanthemi EC16 , 1994 .

[17]  S. He,et al.  Molecular cloning, nucleotide sequence, and marker exchange mutagenesis of the exo-poly-alpha-D-galacturonosidase-encoding pehX gene of Erwinia chrysanthemi EC16 , 1990, Journal of bacteriology.

[18]  G. Walker,et al.  A Novel Sinorhizobium meliloti Operon Encodes an α-Glucosidase and a Periplasmic-Binding-Protein-Dependent Transport System for α-Glucosides , 1999 .

[19]  N. Hugouvieux-Cotte-Pattat,et al.  Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: enzyme characteristics and potential inhibitors , 1997, Journal of bacteriology.

[20]  M. Saier Families of transmembrane sugar transport proteins , 2000, Molecular microbiology.

[21]  J. Robert-Baudouy,et al.  Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937 , 1992, Journal of bacteriology.

[22]  J. Tommassen,et al.  Nucleotide sequence of the ugp genes of Escherichia coli K‐12: homology to the maltose system , 1988, Molecular microbiology.

[23]  N. Keen,et al.  The Role of Pectic Enzymes in Plant Pathogenesis , 1986 .

[24]  V. Shevchik,et al.  The Exopolygalacturonate Lyase PelW and the Oligogalacturonate Lyase Ogl, Two Cytoplasmic Enzymes of Pectin Catabolism in Erwinia chrysanthemi 3937 , 1999, Journal of bacteriology.

[25]  W. Nasser,et al.  Antagonistic effect of CRP and KdgR in the transcription control of the Erwinia chrysanthemi pectinolysis genes , 1997, Molecular microbiology.

[26]  N. Hugouvieux-Cotte-Pattat,et al.  Hexuronate catabolism in Erwinia chrysanthemi , 1987, Journal of bacteriology.

[27]  G. Condemine,et al.  Regulation of pectinolysis in Erwinia chrysanthemi. , 1996, Annual review of microbiology.

[28]  K. Linton,et al.  The Escherichia coli ATP‐binding cassette (ABC) proteins , 1998, Molecular microbiology.

[29]  A. Böck,et al.  Genetics of a novel starch utilisation pathway present in Klebsiella oxytoca. , 1996, Journal of molecular biology.

[30]  V. Shevchik,et al.  Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family , 1997, Journal of bacteriology.

[31]  E. Nester,et al.  Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Toussaint,et al.  phiEC2, a new generalized transducing phage of Erwinia chrysanthemi. , 1984, Virology.

[33]  D. Expert,et al.  The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi , 1997, Journal of bacteriology.

[34]  G. Condemine,et al.  The Erwinia chrysanthemi pecT gene regulates pectinase gene expression , 1996, Journal of bacteriology.

[35]  W. Saurin,et al.  Bacterial binding protein‐dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins , 1994, Molecular microbiology.

[36]  C. W. Jones,et al.  Molecular analysis of the lac operon encoding the binding‐protein‐dependent lactose transport system and β‐galactosidase in Agrobacterium radiobacter , 1992, Molecular microbiology.

[37]  M H Saier,et al.  Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria , 1993, Microbiological reviews.

[38]  J. Benen,et al.  Modes of Action of Five Different Endopectate Lyases from Erwinia chrysanthemi 3937 , 1999 .

[39]  M. Saier,et al.  Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. , 1998, Advances in microbial physiology.

[40]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[41]  A A Mironov,et al.  Transcriptional regulation of transport and utilization systems for hexuronides, hexuronates and hexonates in gamma purple bacteria , 2000, Molecular microbiology.

[42]  J. Robert-Baudouy,et al.  Regulation of pelZ, a gene of the pelB-pelC cluster encoding a new pectate lyase of Erwinia chrysanthemi 3937 , 1996, Journal of bacteriology.

[43]  N. Hugouvieux-Cotte-Pattat,et al.  Aldohexuronate transport system in Erwinia carotovora , 1983, Journal of bacteriology.

[44]  G. Condemine,et al.  Analysis of an Erwinia chrysanthemi gene cluster involved in pectin degradation , 1991, Molecular microbiology.

[45]  G. L. Hazelbauer,et al.  High- and low-abundance chemoreceptors in Escherichia coli: differential activities associated with closely related cytoplasmic domains , 1997, Journal of bacteriology.