3D Bipedal Robotic Walking: Models, Feedback Control, and Open Problems

Abstract The fields of control and robotics are contributing to the development of bipedal robots that can realize walking motions with the stability and agility of a human being. Dynamic models for bipeds are hybrid in nature. They contain both continuous and discrete elements, with switching events that are spatially driven by unilateral constraints at ground contact and impulse-like forces that occur at foot touchdown. Control laws for these machines must be hybrid as well. The goals of this paper are threefold: highlight certain properties of the models which greatly influence the control law design; present two control design approaches; and indicate some of the many open problems.

[1]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[2]  Hsu Chen,et al.  Passive dynamic walking with knees : a point foot model , 2007 .

[3]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[4]  Arthur D. Kuo,et al.  Choosing Your Steps Carefully , 2007, IEEE Robotics & Automation Magazine.

[5]  A. Isidori Nonlinear Control Systems , 1985 .

[6]  Koushil Sreenath,et al.  A Compliant Hybrid Zero Dynamics Controller for Stable, Efficient and Fast Bipedal Walking on MABEL , 2011, Int. J. Robotics Res..

[7]  Aaron D. Ames,et al.  Rank properties of poincare maps for hybrid systems with applications to bipedal walking , 2010, HSCC '10.

[8]  Jessy W. Grizzle,et al.  Experimental Validation of a Framework for the Design of Controllers that Induce Stable Walking in Planar Bipeds , 2004, Int. J. Robotics Res..

[9]  Vladimir J. Lumelsky,et al.  Synthesis of turning pattern trajectories for a biped robot in a scene with obstacles , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[10]  Bernard Brogliato,et al.  Modeling, stability and control of biped robots - a general framework , 2004, Autom..

[11]  Christine Chevallereau,et al.  Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot , 2009, IEEE Transactions on Robotics.

[12]  Yannick Aoustin,et al.  Dynamical Synthesis of a Walking Cyclic Gait for a Biped with Point Feet , 2006 .

[13]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[14]  Yannick Aoustin,et al.  Effect of circular arc feet on a control law for a biped , 2009, Robotica.

[15]  Jun-Ho Oh,et al.  Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor , 2007, J. Intell. Robotic Syst..

[16]  Aaron D. Ames,et al.  Three-Dimensional Kneed Bipedal Walking: A Hybrid Geometric Approach , 2009, HSCC.

[17]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[18]  Fuzhen Zhang The Schur complement and its applications , 2005 .

[19]  Miomir Vukobratovic,et al.  Zmp: a Review of Some Basic Misunderstandings , 2006, Int. J. Humanoid Robotics.

[20]  Bruno Siciliano,et al.  Robot Force Control , 2000 .

[21]  Hirochika Inoue,et al.  Humanoid robotics platforms developed in HRP , 2004, Robotics Auton. Syst..

[22]  Jessica K. Hodgins,et al.  Adjusting step length for rough terrain locomotion , 1991, IEEE Trans. Robotics Autom..

[23]  Andrew A Biewener,et al.  Running over rough terrain reveals limb control for intrinsic stability , 2006, Proceedings of the National Academy of Sciences.

[24]  Jessy W. Grizzle,et al.  Hybrid Invariant Manifolds in Systems With Impulse Effects With Application to Periodic Locomotion in Bipedal Robots , 2009, IEEE Transactions on Automatic Control.

[25]  Garth Zeglin,et al.  Powered bipeds based on passive dynamic principles , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[26]  Dan B. Marghitu,et al.  Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points , 1994, Int. J. Robotics Res..

[27]  John Guckenheimer,et al.  Planar Hybrid Systems , 1994, Hybrid Systems.

[28]  Atsuo Takanishi,et al.  Experimental development of a foot mechanism with shock absorbing material for acquisition of landing surface position information and stabilization of dynamic biped walking , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[29]  Aaron D. Ames,et al.  A geometric approach to three-dimensional hipped bipedal robotic walking , 2007, 2007 46th IEEE Conference on Decision and Control.

[30]  Kazuhito Yokoi,et al.  Balance control of a piped robot combining off-line pattern with real-time modification , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[31]  A. V. Roup,et al.  Limit cycle analysis of the verge and foliot clock escapement using impulsive differential equations and Poincaré maps , 2003 .

[32]  Friedrich Pfeiffer,et al.  The concept of jogging JOHNNIE , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[33]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[34]  Shuuji Kajita,et al.  Adaptive Gait Control of a Biped Robot Based on Realtime Sensing of the Ground Profile , 1997, Auton. Robots.

[35]  Aaron D. Ames,et al.  Stability of Zeno equilibria in Lagrangian hybrid systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[36]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[37]  Wassim M. Haddad,et al.  Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control , 2006 .

[38]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[39]  Katie Byl,et al.  Approximate optimal control of the compass gait on rough terrain , 2008, 2008 IEEE International Conference on Robotics and Automation.

[40]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[41]  Ian A. Hiskens,et al.  Stability of hybrid system limit cycles: application to the compass gait biped robot , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[42]  Francesco Bullo,et al.  Controlled symmetries and passive walking , 2005, IEEE Transactions on Automatic Control.

[43]  Christine Chevallereau,et al.  Bipedal Robots : Modeling, Design and Walking Synthesis , 2009 .

[44]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[45]  A H Hansen,et al.  A low-dimensional sagittal-plane forward-dynamic model for asymmetric gait and its application to study the gait of transtibial prosthesis users. , 2009, Journal of biomechanical engineering.

[46]  Jessy W. Grizzle,et al.  The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper , 2009, IEEE Transactions on Automatic Control.

[47]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[48]  Christine Chevallereau,et al.  Stable Bipedal Walking With Foot Rotation Through Direct Regulation of the Zero Moment Point , 2008, IEEE Transactions on Robotics.

[49]  Arthur D. Kuo,et al.  Stabilization of Lateral Motion in Passive Dynamic Walking , 1999, Int. J. Robotics Res..

[50]  최준호,et al.  On observer-based feedback stabilization of periodic orbits in bipedal locomotion , 2007 .

[51]  Munther A. Dahleh,et al.  Global stability of relay feedback systems , 2001, IEEE Trans. Autom. Control..

[52]  J. W. Humberston Classical mechanics , 1980, Nature.

[53]  Aaron D. Ames,et al.  2D bipedal walking with knees and feet: A hybrid control approach , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[54]  A. Michel,et al.  Stability theory for hybrid dynamical systems , 1998, IEEE Trans. Autom. Control..

[55]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[56]  T. Yang,et al.  A Framework for the Control of Stable Aperiodic Walking in Underactuated Planar Bipeds , 2007, ICRA.

[57]  Perinkulam S. Krishnaprasad,et al.  Modeling of impact on a flexible beam , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[58]  Martijn Wisse,et al.  A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees , 2001, Int. J. Robotics Res..

[59]  P. Bézier Numerical control : mathematics and applications , 1972 .

[60]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[61]  William D. Smart,et al.  Bipedal walking on rough terrain using manifold control , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[62]  Kazuhito Yokoi,et al.  A hop towards running humanoid biped , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[63]  Andrew H Hansen,et al.  Roll-over shapes of human locomotor systems: effects of walking speed. , 2004, Clinical biomechanics.

[64]  S. Collins,et al.  The advantages of a rolling foot in human walking , 2006, Journal of Experimental Biology.

[65]  M.W. Spong,et al.  Reduction-based control with application to three-dimensional bipedal walking robots , 2008, 2008 American Control Conference.

[66]  Ambarish Goswami,et al.  Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point , 1999, Int. J. Robotics Res..

[67]  Aaron D. Ames,et al.  On the existence of Zeno behavior in hybrid systems with non-isolated Zeno equilibria , 2008, 2008 47th IEEE Conference on Decision and Control.

[68]  W. Haddad,et al.  A generalization of Poincare's theorem to hybrid and impulsive dynamical systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[69]  Tad McGeer,et al.  Stability and control of two-dimensional biped walking , 1988 .

[70]  Yaodong Pan,et al.  Biped walking robot using a stick on uneven ground , 2007, SICE Annual Conference 2007.

[71]  J. Dingwell,et al.  Dynamic stability of passive dynamic walking on an irregular surface. , 2007, Journal of biomechanical engineering.

[72]  Atsuo Takanishi,et al.  Biped landing pattern modification method with nonlinear compliance control , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[73]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[74]  J. Grizzle,et al.  A Restricted Poincaré Map for Determining Exponentially Stable Periodic Orbits in Systems with Impulse Effects: Application to Bipedal Robots , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[75]  Jun Ho Choi,et al.  Planar bipedal walking with foot rotation , 2005, Proceedings of the 2005, American Control Conference, 2005..

[76]  B. Brogliato Nonsmooth Mechanics: Models, Dynamics and Control , 1999 .

[77]  Robert D. Gregg,et al.  Reduction-based Control of Three-dimensional Bipedal Walking Robots , 2010, Int. J. Robotics Res..

[78]  Shuuji Kajita,et al.  A friction based “twirl” for biped robots , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[79]  Arthur D Kuo,et al.  Energetics of actively powered locomotion using the simplest walking model. , 2002, Journal of biomechanical engineering.

[80]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[81]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[82]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[83]  Katie Byl,et al.  Metastable Walking on Stochastically Rough Terrain , 2008, Robotics: Science and Systems.

[84]  Aaron D. Ames,et al.  3D bipedal walking with knees and feet: A hybrid geometric approach , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[85]  James P. Schmiedeler,et al.  A framework for the control of stable aperiodic walking in underactuated planar bipeds , 2009, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[86]  Masaki Ogino,et al.  Stabilizing biped walking on rough terrain based on the compliance control , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[87]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[88]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[89]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[90]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[91]  Ching-Long Shih,et al.  The motion control of a statically stable biped robot on an uneven floor , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[92]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[93]  M. Vukobratovic,et al.  Biped Locomotion , 1990 .

[94]  A. Biewener,et al.  Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height , 2006, Journal of Experimental Biology.

[95]  Richard Q. van der Linde,et al.  Delft Pneumatic Bipeds , 2007 .

[96]  Ching-Long Shih,et al.  Ascending and descending stairs for a biped robot , 1999, IEEE Trans. Syst. Man Cybern. Part A.