Algorithmic introduction of quantified cuts

Abstract We describe a method for inverting Gentzen's cut-elimination in classical first-order logic. Our algorithm is based on first computing a compressed representation of the terms present in the cut-free proof and then cut-formulas that realize such a compression. Finally, a proof using these cut-formulas is constructed. Concerning asymptotic complexity, this method allows an exponential compression of quantifier complexity (the number of quantifier-inferences) of proofs.

[1]  G. Takeuti Proof Theory , 1975 .

[2]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[3]  Charisma Lee A completeness theorem and a computer program for finding theorems derivable from given axioms , 1967 .

[4]  Jeffrey Shallit,et al.  Automaticity I: Properties of a Measure of Descriptional Complexity , 1996, J. Comput. Syst. Sci..

[5]  Christoph Lüth,et al.  International Workshop on User Interfaces for Theorem Provers , 2013 .

[6]  Alexander Leitsch,et al.  PROOFTOOL: a GUI for the GAPT Framework , 2012, UITP.

[7]  J. Avigad Proof Theory , 2017, 1711.01994.

[8]  Matthias Baaz,et al.  On the complexity of proof deskolemization , 2012, J. Symb. Log..

[9]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[10]  Stefan Hetzl,et al.  Describing proofs by short tautologies , 2009, Ann. Pure Appl. Log..

[11]  Alan Bundy,et al.  Conjecture Synthesis for Inductive Theories , 2011, Journal of Automated Reasoning.

[12]  Lutz Straßburger,et al.  Herbrand-Confluence , 2013, Log. Methods Comput. Sci..

[13]  Stefan Hetzl,et al.  Proofs as Tree Languages , 2011 .

[14]  Stefan Hetzl,et al.  Applying Tree Languages in Proof Theory , 2012, LATA.

[15]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[16]  Simon Colton,et al.  Automatic Construction and Verification of Isotopy Invariants , 2007, Journal of Automated Reasoning.

[17]  V. Orevkov Lower bounds for increasing complexity of derivations after cut elimination , 1982 .

[18]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[19]  George Boolos,et al.  Don't eliminate cut , 1984, J. Philos. Log..

[20]  MSc PhD Simon Colton BSc Automated Theory Formation in Pure Mathematics , 2002, Distinguished Dissertations.

[21]  Josef Urban,et al.  Automated Proof Compression by Invention of New Definitions , 2010, LPAR.

[22]  Jeffrey Shallit,et al.  Automatic Complexity of Strings , 2001, J. Autom. Lang. Comb..

[23]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[24]  Florent Jacquemard,et al.  Rigid tree automata and applications , 2011, Inf. Comput..

[25]  Florent Jacquemard,et al.  Rigid Tree Automata , 2009, LATA.

[26]  Simon Colton,et al.  Classification results in quasigroup and loop theory via a combination of automated reasoning tools , 2008 .

[27]  Dale Miller,et al.  Incorporating Tables into Proofs , 2007, CSL.

[28]  Bruno Woltzenlogel Paleo,et al.  Atomic Cut Introduction by Resolution: Proof Structuring and Compression , 2010, LPAR.

[29]  Alexander Leitsch,et al.  On Skolemization and Proof Complexity , 1994, Fundam. Informaticae.

[30]  Jeffrey Shallit,et al.  Automaticity: Properties of a Measure of Descriptional Complexity , 1994, STACS.

[31]  Dov M. Gabbay,et al.  Equal Rights for the Cut: Computable Non-analytic Cuts in Cut-based Proofs , 2007, Log. J. IGPL.

[32]  Alan Bundy,et al.  The Automation of Proof by Mathematical Induction , 1999, Handbook of Automated Reasoning.

[33]  Alexander Leitsch,et al.  Towards Algorithmic Cut-Introduction , 2012, LPAR.

[34]  Lutz Straßburger,et al.  Herbrand-Confluence for Cut Elimination in Classical First Order Logic , 2012, CSL.

[35]  William Craig,et al.  Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory , 1957, Journal of Symbolic Logic.

[36]  Alexander Leitsch,et al.  Introducing Quantified Cuts in Logic with Equality , 2014, IJCAR.

[37]  Andrew Ireland,et al.  Productive use of failure in inductive proof , 1996, Journal of Automated Reasoning.

[38]  R. Statman Lower bounds on Herbrand’s theorem , 1979 .

[39]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.

[40]  Tobias Nipkow,et al.  Boolean Unification - The Story So Far , 1989, J. Symb. Comput..

[41]  Matthias Baaz,et al.  Algorithmic Structuring of Cut-free Proofs , 1992, CSL.

[42]  Alan Bundy,et al.  Rippling - meta-level guidance for mathematical reasoning , 2005, Cambridge tracts in theoretical computer science.

[43]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[44]  Franz Baader On the Complexity of Boolean Unification , 1998, Inf. Process. Lett..