Characterization of carbon-doped GaAs grown by metalorganic vapor-phase epitaxy

[1]  Hiroshi Ito,et al.  Saturation of hole concentration in carbon-doped GaAs grown by metalorganic chemical vapor deposition , 1997 .

[2]  H. Wu,et al.  Electrical and structural characterisation of carbon-doped GaAs grown by MOVPE using carbon tetrabromide , 1996 .

[3]  Hiroshi Ito,et al.  Precise control of lattice strain in carbon-doped GaAs by indium co-doping for reliable AlGaAs/GaAs heterojunction bipolar transistors , 1994 .

[4]  Jeong Seok Lee,et al.  Carbon doping and growth rate reduction by CCl4 during metalorganic chemical‐vapor deposition of GaAs , 1994 .

[5]  Kazuo Watanabe,et al.  Characterization of annealed heavily C‐doped p+‐AlGaAs , 1993 .

[6]  B. R. Bennett,et al.  Mismatched InGaAs/InP and InAlAs/InP heterostructures with high crystalline quality , 1993 .

[7]  N. Holonyak,et al.  Effect of annealing temperature on the hole concentration and lattice relaxation of carbon‐doped GaAs and AlxGa1−xAs , 1992 .

[8]  K. Hsieh,et al.  Passivation of carbon acceptors during growth of carbon-doped GaAs, InGaAs, and HBTs by MOCVD , 1992 .

[9]  Kazuo Watanabe,et al.  Effects of annealing ambient on the electrical properties in heavily C‐doped p+‐AlGaAs , 1992 .

[10]  S. Pearton,et al.  Comparison of gallium and arsenic precursors for GaAs carbon doping by organometallic vapor phase epitaxy using CCl4 , 1992 .

[11]  Kazuo Watanabe,et al.  Annealing effect on the carrier concentration in heavily Si-doped n+-InGaAs , 1992 .

[12]  P. Enquist Characterization and thermal instability of low‐resistivity carbon doped GaAs grown by low‐pressure organometallic vapor phase epitaxy , 1992 .

[13]  M. Grasserbauer,et al.  Analysis of Microelectronic Materials and Devices , 1991 .

[14]  M. Hanna,et al.  Strain relaxation and compensation due to annealing in heavily carbon‐doped GaAs , 1991 .

[15]  G. Scilla,et al.  Carbon incorporation in metalorganic vapor phase epitaxy grown GaAs using CHyX4-y, TMG and AsH3 , 1991 .

[16]  Z. Lu,et al.  Very high carbon incorporation in metalorganic vapor phase epitaxy of heavily doped p‐type GaAs , 1991 .

[17]  G. Scilla,et al.  Acceptor doping of (Al,Ga)As using carbon by metalorganic vapor phase epitaxy , 1991 .

[18]  D. G. Weir,et al.  Carbon doping and lattice contraction of GaAs films grown by conventional molecular beam epitaxy , 1991 .

[19]  P. Enquist P-TYPE DOPING LIMIT OF CARBON IN ORGANOMETALLIC VAPOR PHASE EPITAXIAL GROWTH OF GAAS USING CARBON TETRACHLORIDE , 1990 .

[20]  G. E. Stillman,et al.  Species dependence of passivation and reactivation of acceptors in hydrogenated GaAs , 1990 .

[21]  M. O. Manasreh,et al.  Incorporation of carbon in heavily doped AlxGa1−xAs grown by metalorganic molecular beam epitaxy , 1990 .

[22]  Brian T. Cunningham,et al.  Absence of 13C incorporation in 13CCl4‐doped InP grown by metalorganic chemical vapor deposition , 1990 .

[23]  M. Goorsky,et al.  Lattice contraction due to carbon doping of GaAs grown by metalorganic molecular beam epitaxy , 1990 .

[24]  M. Konagai,et al.  Characterization of p‐type GaAs heavily doped with carbon grown by metalorganic molecular‐beam epitaxy , 1988 .

[25]  J. Hutchby,et al.  Growth and diffusion of abrupt zinc profiles in gallium arsenide and heterojunction bipolar transistor structures grown by organometallic vapor phase epitaxy , 1988 .

[26]  T. Makimōto,et al.  Abrupt p‐type doping profile of carbon atomic layer doped GaAs grown by flow‐rate modulation epitaxy , 1987 .

[27]  P. Orders,et al.  Determination of critical layer thickness in InxGa1−xAs/GaAs heterostructures by x‐ray diffraction , 1987 .