Effect of sintering atmosphere on phase stability, and electrical conductivity of proton-conducting Ba(Zr0.84Y0.15Cu0.01)O3−δ

[1]  Zongping Shao,et al.  Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase s , 2011 .

[2]  S. Haile,et al.  Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity , 2010 .

[3]  Ryan O'Hayre,et al.  Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics , 2010 .

[4]  N. Bonanos,et al.  Enhanced sintering and conductivity study of cobalt or nickel doped solid solution of barium cerate and zirconate , 2010 .

[5]  Ryan O'Hayre,et al.  Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics , 2010 .

[6]  R. Guo,et al.  Structural and electrochemical properties of yttrium-doped barium zirconate by addition of CuO , 2010 .

[7]  Yunfei Cheng,et al.  Oxygen permeability of A-site nonstoichiometric BaxCo0.7Fe0.2Nb0.1O3 − δ perovskite oxides , 2010 .

[8]  Jong-Ho Lee,et al.  Low temperature sintering of BaZrO3-based proton conductors for intermediate temperature solid oxide fuel cells , 2010 .

[9]  S. Haile,et al.  High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate , 2009 .

[10]  R. Gerbasi,et al.  Barium Non‐Stoichiometry Role on the Properties of Ba1+xCe0.65Zr0.20Y0.15O3–δ Proton Conductors for IT‐SOFCs , 2008 .

[11]  H. Matsumoto,et al.  Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate , 2008 .

[12]  S. Haile,et al.  Processing of yttrium-doped barium zirconate for high proton conductivity , 2007 .

[13]  H. Matsumoto,et al.  Hydrogen separation from syngas using high-temperature proton conductors , 2007 .

[14]  J. Fergus Electrolytes for solid oxide fuel cells , 2006 .

[15]  T. Tsurui,et al.  The influence of grain structures on the electrical conductivity of a BaZr0.95Y0.05O3 proton conductor , 2006 .

[16]  Sossina M. Haile,et al.  Enhanced Sintering of Yttrium‐Doped Barium Zirconate by Addition of ZnO , 2005 .

[17]  H. Bohn,et al.  Electrical Conductivity of the High-Temperature Proton Conductor BaZr0.9Y0.1O2.95 , 2004 .

[18]  A. Magrez,et al.  Preparation, sintering, and water incorporation of proton conducting Ba0.99Zr0.8Y0.2O3−δ: comparison between three different synthesis techniques , 2004 .

[19]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[20]  L. P. Li,et al.  Defect chemistry and transport properties of Ba_xCe_0.85M_0.15O_3-δ , 2004 .

[21]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[22]  Shigeru Yamauchi,et al.  Thermodynamic database MALT for Windows with gem and CHD , 2002 .

[23]  A. Kovalevsky,et al.  Ceria-based materials for solid oxide fuel cells , 2001 .

[24]  S. Haile,et al.  Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions , 1999 .

[25]  J. Stevenson,et al.  Effect of A-site cation nonstoichiometry on the properties of doped lanthanum gallate , 1998 .

[26]  S. Haile,et al.  The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate , 1997 .

[27]  J.P.P. Huijsmans,et al.  Sinter behaviour of (La, Sr)MnO3 , 1993 .

[28]  Shik Shin,et al.  Protonic Conduction in the Single Crystal of Sc-Doped SrZrO3 , 2002 .

[29]  H. Iwahara,et al.  High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production , 1988 .