Gas-phase dissociation of 1,4-naphthoquinone derivative anions by electrospray ionization tandem mass spectrometry.

Gas-phase dissociation pathways of deprotonated 1,4-naphthoquinone (NQ) derivatives have been investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The major decomposition routes have been elucidated on the basis of quantum chemical calculations at the B3LYP/6-31 + G(d,p) level. Deprotonation sites have been indicated by analysis of natural charges and gas-phase acidity. NQ anions underwent an interesting reaction under collision-induced dissociation conditions, which resulted in the radical elimination of the lateral chain, in contrast with the even-electron rule. Possible pathways have been suggested, and their mechanisms have been elucidated on the basis of Gibbs energy and enthalpy values for the anions previously described at each pathway.

[1]  F. Qi,et al.  Photoionization studies on various quinones by an infrared laser desorption/tunable VUV photoionization TOF mass spectrometry. , 2008, Journal of mass spectrometry : JMS.

[2]  Z. Tian,et al.  Does electrospray ionization produce gas-phase or liquid-phase structures? , 2008, Journal of the American Chemical Society.

[3]  P. Gates,et al.  A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids , 2008 .

[4]  G. Giorgi,et al.  Effect of protonation and deprotonation on the gas-phase reactivity of fluorinated 1,2,4-triazines , 2008, Journal of the American Society for Mass Spectrometry.

[5]  R. Prasad,et al.  Effect of collision-activated dissociation gas and collision energy on the fragmentation of dipyridamole and its rapid and sensitive liquid chromatography/electrospray ionization tandem mass spectrometric determination in human plasma. , 2008, Rapid communications in mass spectrometry : RCM.

[6]  Norberto Lopes,et al.  Aplicação da química quântica computacional no estudo de processos químicos envolvidos em espectrometria de massas , 2008 .

[7]  N. Lopes,et al.  Antitumor activity of two derivatives from 2-acylamine-1, 4-naphthoquinone in mice bearing S180 tumor. , 2008, Journal of experimental therapeutics & oncology.

[8]  G. Damonte,et al.  Electrospray ionization ion trap multiple-stage mass spectrometric fragmentation pathways of leucine and isoleucine: an ab initio computational study. , 2007, Rapid communications in mass spectrometry : RCM.

[9]  N. Lopes,et al.  Fragmentation of diketopiperazines from Aspergillus fumigatus by electrospray ionization tandem mass spectrometry (ESI-MS/MS). , 2007, Journal of mass spectrometry : JMS.

[10]  Xinmiao Liang,et al.  Studies of iridoid glycosides using liquid chromatography/electrospray ionization tandem mass spectrometry. , 2007, Rapid communications in mass spectrometry : RCM.

[11]  Herbert Thiele,et al.  Even-electron ions: a systematic study of the neutral species lost in the dissociation of quasi-molecular ions. , 2007, Journal of mass spectrometry : JMS.

[12]  E. W. Meijer,et al.  Double cation adduction in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of electron deficient anthraquinone derivatives. , 2007, Journal of mass spectrometry : JMS.

[13]  P. Colepicolo,et al.  Radical Ion Generation Processes of Organic Compounds in Electrospray Ionization Mass Spectrometry , 2007 .

[14]  Marko Rožman,et al.  Aspartic acid side chain effect—Experimental and theoretical insight , 2007, Journal of the American Society for Mass Spectrometry.

[15]  J. Bozzelli,et al.  Quantum chemical study of the structure and thermochemistry of the five-membered nitrogen-containing heterocycles and their anions and radicals. , 2006, The journal of physical chemistry. A.

[16]  B. Green,et al.  Collision-induced fragmentation pathways including odd-electron ion formation from desorption electrospray ionisation generated protonated and deprotonated drugs derived from tandem accurate mass spectrometry. , 2006, Journal of mass spectrometry : JMS.

[17]  J. Lopes,et al.  Fragmentation studies of synthetic 2-acylamino-1,4-naphthoquinones by electrospray ionization mass spectrometry. , 2006, Journal of mass spectrometry : JMS.

[18]  K. Siu,et al.  The fragmentation of protonated tyrosine and iodotyrosines: The effect of substituents on the losses of NH3 and of H2O and CO , 2006 .

[19]  Norberto Lopes,et al.  Espectrometria de massas com ionização por "electrospray": processos químicos envolvidos na formação de íons de substâncias orgânicas de baixo peso molecular , 2006 .

[20]  W. Yin,et al.  The fragmentation mechanism of β-(N-alkyl/arylamino)-α,β-unsaturated carboxylates under electrospray ionization conditions , 2006, Amino Acids.

[21]  Hongbin Xiao,et al.  Identification of phenolic constituents in Radix Salvia miltiorrhizae by liquid chromatography/electrospray ionization mass spectrometry. , 2006, Rapid communications in mass spectrometry : RCM.

[22]  W. Yin,et al.  The fragmentation mechanism of beta-(N-alkyl/arylamino)-alpha,beta-unsaturated carboxylates under electrospray ionization conditions. , 2006, Amino Acids.

[23]  P. Ducrot,et al.  Application of positive and negative electrospray ionization, collision-induced dissociation and tandem mass spectrometry to a study of the fragmentation of 6-hydroxyluteolin 7-O-glucoside and 7-O-glucosyl-(1 --> 3)-glucoside. , 2005, Rapid communications in mass spectrometry : RCM.

[24]  D. York,et al.  Benchmark calculations of proton affinities and gas-phase basicities of molecules important in the study of biological phosphoryl transfer. , 2005, Physical chemistry chemical physics : PCCP.

[25]  Michael C. Thomas,et al.  A comparison of the gas phase acidities of phospholipid headgroups: Experimental and computational studies , 2005, Journal of the American Society for Mass Spectrometry.

[26]  D. White,et al.  Atmospheric pressure chemical ionization and atmospheric pressure photoionization for simultaneous mass spectrometric analysis of microbial respiratory ubiquinones and menaquinones. , 2004, Journal of mass spectrometry : JMS.

[27]  Hui Hong,et al.  The fragmentation mechanism of five-membered lactones by electrospray ionisation tandem mass spectrometry , 2004 .

[28]  K. Wojciechowski,et al.  Application of electrospray ionization mass spectrometry for studies of anionic σ-adducts of aromatic nitrocompounds , 2004 .

[29]  M. Thevis,et al.  Effect of the location of hydrogen abstraction on the fragmentation of diuretics in negative electrospray ionization mass spectrometry , 2003, Journal of the American Society for Mass Spectrometry.

[30]  A. Namane,et al.  Protein sequencing and identification using tandem mass spectrometry. Edited by Michael Kinter, Nicholas E. Sherman, published by Wiley-Interscience Series on Mass Spectrometry, 2000, 301 p. , 2002 .

[31]  M. Alcamí,et al.  Modeling intrinsic basicities and acidities , 2002 .

[32]  M. Goulart,et al.  Some Applications of Electrochemistry in Biomedical Chemistry. Emphasis on the Correlation of Electrochemical and Bioactive Properties , 2002 .

[33]  M. Alcamí,et al.  Computational chemistry: a useful (sometimes mandatory) tool in mass spectrometry studies. , 2001, Mass spectrometry reviews.

[34]  M. Goerner,et al.  MS/MS-libraries with triple quadrupole-tandem mass spectrometers for drug identification and drug screening , 2000 .

[35]  N. Sherman,et al.  Protein Sequencing and Identification Using Tandem Mass Spectrometry: Kinter/Tandem Mass Spectrometry , 2000 .

[36]  E. Glendening,et al.  Natural resonance theory: I. General formalism , 1998, J. Comput. Chem..

[37]  P. Limbach,et al.  Electrospray ionization mass spectrometry of metalloporphyrins. , 1998, Journal of mass spectrometry : JMS.

[38]  A. Oliveira,et al.  Trypanocidal activity and redox potential of heterocyclic- and 2-hydroxy-naphthoquinones , 1997 .

[39]  K. Reimer,et al.  Analysis of polyaromatic quinones in a complex environmental matrix using gas chromatography ion trap tandem mass spectrometry. , 1997, Talanta.

[40]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[41]  Anita C Jones,et al.  Laser desorption laser photoionization time-of-flight mass spectrometry of dyes , 1993 .

[42]  H. Schlegel,et al.  Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States , 1993 .

[43]  C. Costello,et al.  Tandem mass spectrometry. , 1993, Methods in molecular biology.

[44]  S. A. McLuckey Principles of collisional activation in analytical mass spectrometry , 1992, Journal of the American Society for Mass Spectrometry.

[45]  G M Cohen,et al.  Quinone chemistry and toxicity. , 1992, Toxicology and applied pharmacology.

[46]  R. Cooks,et al.  Angular dependence of internal energy distributions of activated Fe(CO)5.cntdot.+ and W(CO)6.cntdot.+ ions. The contributions of vibrational and electronic excitation mechanisms in kiloelectron volt collisions , 1990 .

[47]  H. Bernhard Schlegel,et al.  An improved algorithm for reaction path following , 1989 .

[48]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[49]  S. Hammerum Distonic radical cations in gaseous and condensed phase , 1988 .

[50]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[51]  Helmut Schwarz,et al.  Gas-phase chemistry of collisionally activated ions , 1983 .

[52]  F. McLafferty Tandem mass spectrometry. , 1981, Science.

[53]  K. Levsen,et al.  Gaseous odd- and even-electron ions , 1980 .

[54]  M. Karni,et al.  The ‘even‐electron rule’ , 1980 .

[55]  R. Cooks,et al.  Fragmentation of even electron ions. Protonated ketones and ethers , 1979 .

[56]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[57]  J. W. Miller,et al.  Potential naphthoquinone antimalarials. 2-acylhydrazino-1,4-naphthoquinones. , 1969, Journal of medicinal chemistry.

[58]  Peter Sykes,et al.  A guidebook to mechanism in organic chemistry , 1970 .

[59]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .