Comparing poly-3-hydroxybutyrate accumulation in Azospirillum brasilense strains Sp7 and Sp245: The effects of copper(II)

[1]  D. Jaillard,et al.  In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. , 2010, The Analyst.

[2]  G. Menexes,et al.  Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of Science from 1981 to 2008 , 2010, Plant and Soil.

[3]  Guo-Qiang Chen,et al.  Plastics from bacteria : natural functions and applications , 2010 .

[4]  S. Castro-Sowinski,et al.  Natural Functions of Bacterial Polyhydroxyalkanoates , 2010 .

[5]  Gurusahai Khalsa-Moyers Use of Proteomics Tools to Investigate Protein Expression in Azospirillum brasilense , 2010 .

[6]  Y. Bashan,et al.  Chapter Two – How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment , 2010 .

[7]  A. Mulyukin,et al.  Phenotypic variability in Azospirillum brasilense strains Sp7 and Sp245: Association with dormancy and characteristics of the variants , 2009, Microbiology.

[8]  M. Ma̧czka,et al.  Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[9]  W. J. DeGrip,et al.  Monitoring of biomass composition from microbiological sources by means of FT‐IR spectroscopy , 2009, Biotechnology and bioengineering.

[10]  A. Mulyukin,et al.  Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense , 2009, Microbiology.

[11]  Almas Zaidi,et al.  Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils , 2009 .

[12]  M. Rutgers Field effects of pollutants at the community level--experimental challenges and significance of community shifts for ecosystem functioning. , 2008, The Science of the total environment.

[13]  W. Ratcliff,et al.  Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. , 2008, FEMS microbiology ecology.

[14]  P. Tarantilis,et al.  Responses of Azospirillum brasilense to Nitrogen Deficiency and to Wheat Lectin: A Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopic Study , 2008, Microbial Ecology.

[15]  B. Rehm Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles. , 2007, Current issues in molecular biology.

[16]  D. Naumann Infrared Spectroscopy in Microbiology , 2006 .

[17]  P. Tarantilis,et al.  Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques. , 2006, Analytica chimica acta.

[18]  K. Mukerji,et al.  Microbial activity in the rhizosphere , 2006 .

[19]  R. Strasser,et al.  Role of Beneficial Microsymbionts on the Plant Performance and Plant Fitness , 2006 .

[20]  Ashok K. Srivastava,et al.  Recent advances in microbial polyhydroxyalkanoates , 2005 .

[21]  S. Castro-Sowinski,et al.  Ecological and Agricultural Significance of Bacterial Polyhydroxyalkanoates , 2005, Critical reviews in microbiology.

[22]  G. Holguin,et al.  Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). , 2004, Canadian journal of microbiology.

[23]  V. Safronova,et al.  [Employment of associative bacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium]. , 2004, Mikrobiologiia.

[24]  Y. Alekseev,et al.  Employment of Rhizobacteria for the Inoculation of Barley Plants Cultivated in Soil Contaminated with Lead and Cadmium , 2004, Microbiology.

[25]  D. Kadouri,et al.  Involvement of the Reserve Material Poly-β-Hydroxybutyrate in Azospirillum brasilense Stress Endurance and Root Colonization , 2003, Applied and Environmental Microbiology.

[26]  H. Billman-Jacobe,et al.  Quantitative Determination of the Biodegradable Polymer Poly(β-hydroxybutyrate) in a Recombinant Escherichia coli Strain by Use of Mid-Infrared Spectroscopy and Multivariative Statistics , 2000, Applied and Environmental Microbiology.

[27]  A. Kamnev,et al.  Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilense , 1999 .

[28]  O. Yarden,et al.  Polyhydroxyalkanoate analysis in Azospirillum brasilense , 1995 .

[29]  R. Gherna American Type Culture Collection catalogue of bacteria and phages , 1989 .

[30]  Y. Okon,et al.  Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense Cd , 1985 .

[31]  V. Baldani,et al.  Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat , 1983 .

[32]  J. Döbereiner,et al.  A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. , 1978, Canadian journal of microbiology.

[33]  J. M. Day,et al.  Physiological aspects of N2-fixation by a Spirillum from Digitaria roots , 1976 .