Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p

Cytosolic Sec1/munc18‐like proteins (SM proteins) are recruited to membrane fusion sites by interaction with syntaxin‐type SNARE proteins, constituting indispensable positive regulators of intracellular membrane fusion. Here we present the crystal structure of the yeast SM protein Sly1p in complex with a short N‐terminal peptide derived from the Golgi‐resident syntaxin Sed5p. Sly1p folds, similarly to neuronal Sec1, into a three‐domain arch‐shaped assembly, and Sed5p interacts in a helical conformation predominantly with domain I of Sly1p on the opposite site of the nSec1/syntaxin‐1‐binding site. Sequence conservation of the major interactions suggests that homologues of Sly1p as well as the paralogous Vps45p group bind their respective syntaxins in the same way. Furthermore, we present indirect evidence that nSec1 might be able to contact syntaxin 1 in a similar fashion. The observed Sly1p‐Sed5p interaction mode therefore indicates how SM proteins can stay associated with the assembling fusion machinery in order to participate in late fusion steps.

[1]  W. Weissenhorn,et al.  X-ray Structure of a Neuronal Complexin-SNARE Complex from Squid* , 2002, The Journal of Biological Chemistry.

[2]  T. Südhof,et al.  How Tlg2p/syntaxin 16 'snares’ Vps45 , 2002, The EMBO journal.

[3]  K. Misura,et al.  Three-dimensional structure of the amino-terminal domain of syntaxin 6, a SNAP-25 C homolog , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Gallwitz,et al.  Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes , 2002, The Journal of cell biology.

[5]  J. Rothman,et al.  Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Südhof,et al.  Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. , 2002, Developmental cell.

[7]  H. Pelham,et al.  An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes , 2001, The EMBO journal.

[8]  D. James,et al.  Vps45p stabilizes the syntaxin homologue Tlg2p and positively regulates SNARE complex formation , 2001, The EMBO journal.

[9]  W. Tai,et al.  Selective formation of Sed5p-containing SNARE complexes is mediated by combinatorial binding interactions. , 2001, Molecular biology of the cell.

[10]  T. Südhof,et al.  Vam3p structure reveals conserved and divergent properties of syntaxins , 2001, Nature Structural Biology.

[11]  W. Weissenhorn,et al.  Crystal structures of neuronal squid Sec1 implicate inter-domain hinge movement in the release of t-SNAREs. , 2001, Journal of molecular biology.

[12]  Richard H. Scheller,et al.  SNARE-mediated membrane fusion , 2001, Nature Reviews Molecular Cell Biology.

[13]  Marino Zerial,et al.  Rab proteins as membrane organizers , 2001, Nature Reviews Molecular Cell Biology.

[14]  Scott D. Emr,et al.  New Component of the Vacuolar Class C-Vps Complex Couples Nucleotide Exchange on the Ypt7 Gtpase to Snare-Dependent Docking and Fusion , 2000, The Journal of cell biology.

[15]  P. Novick,et al.  Ordering the Final Events in Yeast Exocytosis , 2000, The Journal of cell biology.

[16]  F. Hughson,et al.  Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly , 2000, Nature Structural Biology.

[17]  J. Rothman,et al.  Compartmental specificity of cellular membrane fusion encoded in SNARE proteins , 2000, Nature.

[18]  J. Rothman,et al.  Functional architecture of an intracellular membrane t-SNARE , 2000, Nature.

[19]  S. Emr,et al.  Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. , 2000, Molecular cell.

[20]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[21]  J. Rothman,et al.  Close Is Not Enough , 2000, The Journal of cell biology.

[22]  W. Weissenhorn,et al.  The X-ray crystal structure of neuronal Sec1 from squid sheds new light on the role of this protein in exocytosis. , 2000, Structure.

[23]  Richard H. Scheller,et al.  Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex , 2000, Nature.

[24]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[25]  R. Scheller,et al.  Nsec1 Binds a Closed Conformation of Syntaxin1a , 2000, The Journal of cell biology.

[26]  T. Südhof,et al.  A conformational switch in syntaxin during exocytosis: role of munc18 , 1999, The EMBO journal.

[27]  P. Novick,et al.  Sec1p Binds to Snare Complexes and Concentrates at Sites of Secretion , 1999, The Journal of cell biology.

[28]  K. Broadie,et al.  Syntaxin 1A Interacts with Multiple Exocytic Proteins to Regulate Neurotransmitter Release In Vivo , 1999, Neuron.

[29]  W. Antonin,et al.  Mixed and Non-cognate SNARE Complexes , 1999, The Journal of Biological Chemistry.

[30]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[31]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[32]  C. Burd,et al.  Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome , 1999, Current Biology.

[33]  Russ Miller,et al.  The design and implementation of SnB version 2.0 , 1999 .

[34]  K. Fiebig,et al.  Folding intermediates of SNARE complex assembly , 1999, Nature Structural Biology.

[35]  T. Südhof,et al.  Membrane fusion and exocytosis. , 1999, Annual review of biochemistry.

[36]  A. Brunger,et al.  Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[38]  Y. Kosodo,et al.  Protein-protein interactions of the yeast Golgi t-SNARE Sed5 protein distinct from its neural plasma membrane cognate syntaxin 1. , 1998, Biochemical and biophysical research communications.

[39]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[40]  C. Barlowe,et al.  Initial docking of ER‐derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins , 1998, The EMBO journal.

[41]  G. Augustine,et al.  A Neuronal Sec1 Homolog Regulates Neurotransmitter Release at the Squid Giant Synapse , 1998, The Journal of Neuroscience.

[42]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[43]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[44]  S. Emr,et al.  A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. , 1997, Molecular biology of the cell.

[45]  Reinhard Jahn,et al.  Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy , 1997, Cell.

[46]  D. Gallwitz,et al.  High‐affinity binding of the yeast cis‐Golgi t‐SNARE, Sed5p, to wild‐type and mutant Sly1p, a modulator of transport vesicle docking , 1997, FEBS letters.

[47]  H. Pelham,et al.  Homotypic vacuolar fusion mediated by t- and v-SNAREs , 1997, Nature.

[48]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[49]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[50]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[51]  S. Emr,et al.  Mutations in the VPS45 gene, a SEC1 homologue, result in vacuolar protein sorting defects and accumulation of membrane vesicles. , 1994, Journal of cell science.

[52]  J. Rothman,et al.  A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles , 1994, Cell.

[53]  G. Rubin,et al.  Mutations in the drosophila Rop gene suggest a function in general secretion and synaptic transmission , 1994, Neuron.

[54]  Jonathan Pevsner,et al.  Specificity and regulation of a synaptic vesicle docking complex , 1994, Neuron.

[55]  P. De Camilli,et al.  A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Scheller,et al.  Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. , 1994, Science.

[57]  T. Südhof,et al.  Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin , 1993, Nature.

[58]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[59]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[60]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[61]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[62]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[63]  D. Gallwitz,et al.  The yeast SLY gene products, suppressors of defects in the essential GTP-binding Ypt1 protein, may act in endoplasmic reticulum-to-Golgi transport , 1991, Molecular and cellular biology.

[64]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[65]  D. Gallwitz,et al.  Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily , 1991, Molecular and cellular biology.

[66]  J. Risler,et al.  Amino acid substitutions in structurally related proteins. A pattern recognition approach. Determination of a new and efficient scoring matrix. , 1988, Journal of molecular biology.

[67]  C. Chothia Principles that determine the structure of proteins. , 1984, Annual review of biochemistry.

[68]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[69]  R. Schekman,et al.  Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae , 1979, Proceedings of the National Academy of Sciences.