Spatially resolved spectroscopy of planetary nebulae and their halos - I. Five galactic disk objects

Strong mass loss off stars at the tip of the asymptotic giant branch (AGB) profoundly affects properties of these stars and their surroundings, including the subsequent planetary nebula (PN) stage. With this study we wanted to determine physical properties of mass loss by studying weakly emitting halos, focusing on objects in the galactic disk. Halos surround the, up to several thousand times, brighter central regions of PNe. Young halos, specifically, still contain information of the preceeding final mass loss stage on the AGB. In the observations we used the method of integral field spectroscopy with the PMAS instrument. This is the first committed study of halos of PNe that uses this technique. We improved our data analysis by a number of steps. In a study of the influence of scattered light we found that a moderate fraction of intensities in the inner halo originate in adjacent regions. As we combine line intensities of distant wavelengths, and because radial intensity gradients are steep, we corrected for effects of differential atmospheric refraction. In order to increase the signal-to-noise of weak emission lines we introduced a dedicated method to bin spectra of individual spatial elements. We also developed a general technique to part the temperature-sensitive oxygen line [O iii] λ4363 from the adjacent telluric mercury line Hg λ4358 – without using separate sky exposures. By these steps we avoided introducing errors of several thousand Kelvin to our temperature measurements in the halo. For IC 3568 we detected a halo. For M 2–2 we found a halo radius that is 2.5 times larger than reported earlier. We derived radially densely sampled temperature and density structures for four nebulae, which all extend from the central regions and out into the halo. NGC 7662, IC 3568, and NGC 6826 show steep radially increasing temperatures and a hot halo, indicating that the gas in the halo is not in thermal equilibrium. M 2–2 shows a larger temperature in the central region and an otherwise constant value. From the density structures we made estimates of core and halo masses and – for the first time reliable – mass loss rates at the tip of the AGB. All four objects show inwards radially increasing mass loss rate structures, which represent a rise by a factor of about 4–7, during the final mass loss phase, that covers a time period of approximately 10 4 years. Within a factor of two, the average of the maximum mass loss rates, which are distance dependent, is u [%]

[1]  J. P. Phillips The distances of less-evolved planetary nebulae: a further test of statistical distance scales , 2005 .

[2]  J. B. Kaler,et al.  A photometric survey of compact and selected planetary nebulae. , 1983 .

[3]  A. Manchado,et al.  Physical Structure of Planetary Nebulae. I. The Owl Nebula , 2003, astro-ph/0303056.

[4]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[5]  R. Shaw,et al.  SOFTWARE FOR THE ANALYSIS OF EMISSION LINE NEBULAE , 1995 .

[6]  M. Guerrero,et al.  Physical Structure of Planetary Nebulae. II. NGC 7662 , 2004, astro-ph/0407029.

[7]  M. Seaton,et al.  Ultraviolet spectra of planetary nebulae – VI. NGC 7662 , 1982 .

[8]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[9]  A. Pauldrach,et al.  Radiation-driven winds of hot luminous stars - XIII. A description of NLTE line blocking and blanketing towards realistic models for expanding atmospheres , 2001 .

[10]  A. Monreal-Ibero,et al.  INTEGRAL FIELD SPECTROSCOPY OF FAINT HALOS OF PLANETARY NEBULAE , 2005 .

[11]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[12]  M. Brereton Annals of the Israel Physical Society Vol 2 Statistical Physics Proceedings of the 13th IUPAP Conference on Statistical Physics held at the Technion – Israel Institute of Technology Haifa , 1979 .

[13]  A. Hajian,et al.  IT'S PLANETARY NEBULAE EXPANSION DISTANCES. III. , 1996 .

[14]  F. Sabbadin,et al.  The structure of NGC 3587, the Owl nebula , 1985 .

[15]  Bruce Balick,et al.  Shapes and Shaping of Planetary Nebulae , 2002 .

[16]  N. Soker,et al.  The evolution of the planetary nebula NGC 6826 , 1990 .

[17]  N. K. Reay,et al.  Electron temperature mapping of planetary nebulae , 1982 .

[18]  C. Sandin Three-component modeling of C-rich AGB star winds IV. Revised interpretation with improved numerical descriptions , 2007, 0711.0281.

[19]  S. Pottasch ASYMMETRICAL PLANETARY NEBULAE , 1995 .

[20]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[21]  L. Aller,et al.  The High-Excitation Planetary Nebula NGC 7662 , 1997 .

[22]  Formation and Evolution of Planetary Nebulae , 1999 .

[23]  S. F. Sanchez,et al.  The Night Sky at the Calar Alto Observatory II: The Sky at the Near-infrared , 2007, 0709.0813.

[24]  J. Walsh,et al.  On the spectroscopic detection of faint haloes and reflection nebulae around planetary nebulae , 1989 .

[25]  C. O’Dell,et al.  Hβ and [o III] Fluices from Planetary Nebulae. II. , 1960 .

[26]  A. Manchado,et al.  On The Kinematics of Multiple-Shell Planetary Nebulae. I. Data and Expansion Velocities , 1998 .

[27]  R. Wesson,et al.  Physical conditions in the planetary nebula NGC 6543 , 2004 .

[28]  W. Feibelman,et al.  The planetary nebula IC 3568 - A model based on IUE observations , 1983 .

[29]  J. Walsh,et al.  Planetary nebula haloes – II. NGC 7662 and shock heating mechanisms in haloes , 1991 .

[30]  G. Ramos-Larios,et al.  Further 2MASS mapping of hot dust in planetary nebulae , 2006 .

[31]  Chemical abundances of planetary nebulae from optical recombination lines – I. Observations and plasma diagnostics , 2004 .

[32]  Ivan R. King,et al.  THE PROFILE OF A STAR IMAGE , 1971 .

[33]  G. Mellema,et al.  The electron temperature of the inner halo of the Planetary Nebula NGC 6543 , 2001, astro-ph/0108352.

[34]  R. Corradi,et al.  The evolution of planetary nebulae. II. Circumstellar environment and expansion properties , 2005 .

[35]  Merrifield,et al.  PLANETARY NEBULAE: THEIR EVOLUTION AND ROLE IN THE UNIVERSE , 2003 .

[36]  R. Corradi,et al.  Ionized haloes in planetary nebulae: new discoveries, literature compilation and basic statistical properties , 2003 .

[37]  R. Pogge,et al.  Imaging Spectrophotometry of the Planetary Nebulae NGC 7662 and NGC 7009 , 1996 .

[38]  K. Kwitter,et al.  A New Look at Carbon Abundances in Planetary Nebulae. III. DDDM1, IC 3568, IC 4593, NGC 6210, NGC 6720, NGC 6826, and NGC 7009 , 1997, astro-ph/9708012.

[39]  F. Mavromatakis,et al.  The physical structure of the planetary nebula NGC 6781 , 2001 .

[40]  A. Frank The Unity and Diversity of Planetary or Nebulae Radiation- Gasdynamics of PNe. II. , 1994 .

[41]  G. Boeshaar Filamentary structure in planetary nebulae , 1973 .

[42]  J. Kaler C +2 Electron Temperatures in Planetary Nebulae , 1986 .

[43]  Subarcsecond Mid-Infrared Imaging of Two Post Asymptotic Giant Branch 21 Micron Sources , 2002 .

[44]  S. Kwok,et al.  Trace of planetary nebula evolution by distance-independent parameters , 1993 .

[45]  J. Walsh,et al.  The giant halos of NGC 6543 and 6826 , 1989 .

[46]  A. Manchado,et al.  The Dynamical Evolution of the Circumstellar Gas around Low- and Intermediate-Mass Stars. II. The Planetary Nebula Formation , 2002, astro-ph/0208323.

[47]  A. Manchado,et al.  The Dynamical Evolution of the Circumstellar Gas around Low- and Intermediate-Mass Stars. I. The Asymptotic Giant Branch , 2002, astro-ph/0202050.

[48]  Hektor Monteiro,et al.  THREE-DIMENSIONAL PHOTOIONIZATION STRUCTURE AND DISTANCES OF PLANETARY NEBULAE. IV. NGC 40 , 2006, 1106.3550.

[49]  L. Aller,et al.  A spectroscopic survey of 51 planetary nebulae , 1987 .

[50]  Electron temperatures and densities of planetary nebulae determined from the nebular hydrogen recombination spectrum and temperature and density variations , 2004, astro-ph/0403371.

[51]  M. Dopita,et al.  Planetary nebulae : their evolution and role in the universe : proceedings of the 209th symposium of the International Astronomical Union held at Canberra, Australia, 19-23 November 2001 , 2003 .

[52]  The IAC Morphological Catalog of Northern Galactic Planetary Nebulae , 1996 .

[53]  R. Shaw,et al.  Large planetary nebulae and their significance to the late stages of stellar evolution , 1990 .

[54]  J. Kaler Spectrophotometry of 12 planetary nebulae , 1985 .

[55]  M. Steffen,et al.  The evolution of planetary nebulae I. A radiation-hydrodynamics parameter study , 2004 .

[56]  Evencio Mediavilla,et al.  Differential atmospheric refraction in integral-field spectroscopy: Effects and correction - Atmospheric refraction in IFS , 1999 .

[57]  H. E. Schwarz,et al.  Three-Dimensional Photoionization Structure and Distances of Planetary Nebulae. II. Menzel 1 , 2004, astro-ph/0410496.

[58]  Sulfur, Chlorine, and Argon in Planetary Nebulae. I. Observations and Abundances in a Northern Sample , 2001, astro-ph/0106213.

[59]  M. Peimbert,et al.  Temperature fluctuations and the chemical composition of planetary nebulae of Type I. , 1995 .

[60]  Andreas Kelz,et al.  PMAS: The Potsdam Multi-Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak , 2006 .

[61]  C. Zhang,et al.  A Statistical Distance Scale for Galactic Planetary Nebulae , 1995 .

[62]  J. Beletic OPTICAL AND INFRARED DETECTORS FOR ASTRONOMY , 2006 .

[63]  T. Barker Spectrophotometry of planetary nebulae. I. Physical conditions. , 1978 .

[64]  G. H. Bowen,et al.  Dynamical modeling of long-period variable star atmospheres , 1988 .

[65]  R. Tylenda Hot Haloes of Planetary Nebulae , 2003 .

[66]  J. P. Phillips,et al.  Excitation and Density Mapping of NGC 3587 , 2000 .

[67]  Karen A. Huyser,et al.  An Atlas of [N II] and [O III] Images and Spectra of Planetary Nebulae , 2007 .

[68]  D. Osterbrock Electron Densities in Planetary Nebulae. , 1960 .

[69]  Beijing,et al.  Integral field spectroscopy of planetary nebulae: mapping the line diagnostics and hydrogen-poor zones with VLT FLAMES , 2008, 0802.0774.

[70]  U. Jørgensen,et al.  Dynamic model atmospheres of AGB stars - III. Effects of frequency-dependent radiative transfer , 2003 .

[71]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[72]  M. Morris,et al.  Preplanetary Nebulae: A Hubble Space Telescope Imaging Survey and a New Morphological Classification System , 2007, 0707.4662.

[73]  D. Osterbrock,et al.  Book-Review - Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[74]  J. P. Phillips Planetary nebula distances re-examined: an improved statistical scale , 2004 .

[75]  A. Krabbe,et al.  Electron temperature fluctuations in planetary nebulae , 2005 .

[76]  B. Balick,et al.  Temperature variations from Hubble Space Telescope imagery and spectroscopy of NGC 7009 , 2002, astro-ph/0204276.

[77]  J. Riley,et al.  Stellar Wind Paleontology: Shells and Halos of Planetary Nebulae , 1990 .

[78]  L. Willson Mass Loss from Cool Stars: Impact on the Evolution of Stars and Stellar Populations , 2000 .

[79]  Astronomy,et al.  A Reexamination of Electron Density Diagnostics for Ionized Gaseous Nebulae , 2004, astro-ph/0408040.

[80]  J. Kaler The evolution of large planetary nebulae and their central stars , 1983 .

[81]  T. Barker The ionization structure of planetary nebulae. VI - NGC 7662 , 1986 .

[82]  T. Barker The ionization structure of planetary nebulae. VIII - NGC 6826 , 1988 .