From Nd(III) and Pu(III) Oxalates to Oxides: Influence of Nitrilotris(methylenephosphonic acid) on Chemical Composition, Structure, and Morphology

Neodymium oxalate structure and morphology were modified by adding a phosphonate, NTMP, during the oxalic precipitation step. Spherical agglomerates of neodymium oxalate Nd2(C2O4)3(H2O)6·12H2O composed of thin hexagonal rods were precipitated instead of decahydrated oxalate Nd2(C2O4)3(H2O)6·4H2O with rod-like particles usually obtained in the absence of additive. Despite some differences in the complexation with NTMP and complexity from redox, the use of NTMP was successfully transposed to the plutonium system. Spherical agglomerates of plutonium(III) oxalate were so obtained, leading to spherical agglomerates of PuO2 after thermal treatment.

[1]  M. Rivenet,et al.  Crystal growth methods dedicated to low solubility actinide oxalates , 2016 .

[2]  M. Rivenet,et al.  Coordination Modes of Americium in the Am2(C2O4)3(H2O)6·4H2O Oxalate: Synthesis, Crystal Structure, Spectroscopic Characterizations and Comparison in the M2(C2O4)3(H2O)6·nH2O (M = Ln, An) Series. , 2016, Inorganic chemistry.

[3]  Zhong‐Ming Sun,et al.  Structural chemistry of uranium phosphonates , 2015 .

[4]  J. Somers,et al.  Low temperature decomposition of U(IV) and Th(IV) oxalates to nanograined oxide powders , 2015 .

[5]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[6]  M. Rivenet,et al.  Actinide oxalates, solid state structures and applications , 2014 .

[7]  F. Patisson,et al.  New insights on the thermal decomposition of lanthanide(III) and actinide(III) oxalates: from neodymium and cerium to plutonium , 2014, 1402.3046.

[8]  M. Rivenet,et al.  Crystal growth and first crystallographic characterization of mixed uranium(IV)-plutonium(III) oxalates. , 2013, Inorganic chemistry.

[9]  Z. Hubicki,et al.  Nitrilotris(methylenephosphonic) acid as a complexing agent in sorption of heavy metal ions on ion exchangers , 2013 .

[10]  R. Podor,et al.  Synthesis and characterization of Th1−xLnxO2−x/2 mixed-oxides , 2012 .

[11]  Shuao Wang,et al.  Syntheses, structures, and spectroscopic properties of plutonium and americium phosphites and the redetermination of the ionic radii of Pu(III) and Am(III). , 2012, Inorganic chemistry.

[12]  L. Gagliardi,et al.  Periodic trends in lanthanide and actinide phosphonates: discontinuity between plutonium and americium. , 2012, Inorganic chemistry.

[13]  M. Rivenet,et al.  X-Ray diffraction and mu-Raman investigation of the monoclinic-orthorhombic phase transition in Th(1-x)U(x)(C(2)O(4))(2).2H(2)O solid solutions. , 2010, Inorganic chemistry.

[14]  G. Calvez,et al.  New Family of Porous Lanthanide-Containing Coordination Polymers: [Ln2(C2O4)3(H2O)6,12H2O]∞ with Ln = La−Yb or Y , 2010 .

[15]  Lide Zhang,et al.  Template-free fabrication of porous zinc oxide hollow spheres and their enhanced photocatalytic performance , 2010 .

[16]  B. Scott,et al.  Directed synthesis of crystalline plutonium(III) and (IV) oxalates: accessing redox-controlled separations in acidic solutions. , 2009, Inorganic chemistry.

[17]  F. Abraham,et al.  Adaptable coordination of U(IV) in the 2D-(4,4) uranium oxalate network: From 8 to 10 coordinations in the uranium (IV) oxalate hydrates , 2008 .

[18]  F. Abraham,et al.  Synthesis and characterization of mixed An(IV)An(III) oxalates (An(IV) = Th, Np, U or Pu and An(III) = Pu or Am) , 2008 .

[19]  F. Abraham,et al.  Synthesis of new mixed actinides oxalates as precursors of actinides oxide solid solutions , 2007 .

[20]  L. Carlos,et al.  Photoluminescent Lanthanide−Organic 2D Networks: A Combined Synchrotron Powder X-ray Diffraction and Solid-State NMR Study , 2007 .

[21]  N. N. Krot,et al.  Crystal structure of a Np(V) sesquioxalate, Na4(NpO2)2(C2O4)3·2H2O , 2007 .

[22]  F. Abraham,et al.  U(IV)/Ln(III) mixed site in polymetallic oxalato complexes. Part III: Structure of Na[Yb(C2O4)2(H2O)]·3H2O and the derived quadratic series (NH4+)1−x[Ln1−xUx (C2O4)2(H2O)]·(3+x) H2O, Ln=Y, Pr–Sm, Gd, Tb , 2006 .

[23]  F. Abraham,et al.  U(IV)/Ln(III) unexpected mixed site in polymetallic oxalato complexes. Part I. Substitution of Ln(III) for U(IV) from the new oxalate (NH4)2U2(C2O4)5·0.7H2O , 2005 .

[24]  F. Abraham,et al.  U(IV)/LN(III) unexpected mixed site in polymetallic oxalato complexes. Part II. Substitution of U(IV) for Ln(III) in the new oxalates (N2H5)Ln(C2O4)2·nH2O (Ln=Nd, Gd) , 2005 .

[25]  John L. Meyer,et al.  The inhibition of calcium oxalate crystal growth by multidentate organic phosphonates , 1977, Calcified Tissue Research.

[26]  G. H. Nancollas,et al.  The influence of multidentate organic phosphonates on the crystal growth of hydroxyapatite , 1973, Calcified Tissue Research.

[27]  F. Abraham,et al.  Crystal structure of new uranyl oxalates (NH4)2[UO2(C2O4)2· H2O]·2H2O and (NH4)2-x(N2H5)x[(UO2)2(C2O4)3]·3H2O (x=0 and x=1). Comparison with other uranyl oxalates , 2005 .

[28]  Armel Le Bail,et al.  Monte Carlo indexing with McMaille , 2004, Powder Diffraction.

[29]  S. Misra,et al.  Neodymium(III)-substituted bismuth titanate thin film generation using metal alkoxo, acyloxo, and beta-diketonato precursors employing a sol-gel route and using 4f-4f transition spectra as probes to explore kinetic performance. , 2004, Journal of colloid and interface science.

[30]  G. Hägele,et al.  Nitrilotris(methylenephosphonates) in aqueous solution and solid state – dilatometric, potentiometric and NMR investigations , 2004 .

[31]  M. Camara,et al.  Re-investigation of the Er3+–C2O42––H2O system: from the classical ceramic precursor to a new nanoporous molecular material potential precursor , 2003 .

[32]  P. Bowen,et al.  Precipitation of Self-Organized Copper Oxalate Polycrystalline Particles in the Presence of Hydroxypropylmethylcellulose (HPMC): Control of Morphology , 2000 .

[33]  C. Brauer,et al.  Investigation of neptunium(VI) complexation by SiW11O398− by visible/near infrared spectrophotometry and factor analysis , 2000 .

[34]  Petros G. Koutsoukos,et al.  Kinetics of calcium sulfate formation in aqueous media: effect of organophosphorus compounds , 1998 .

[35]  C. Madic,et al.  PLUTONIUM DIOXIDE PARTICLE PROPERTIES AS A FUNCTION OF CALCINATION TEMPERATURE , 1996 .

[36]  G. Seaborg Overview of the Actinide and Lanthanide (the f ) Elements , 1993 .

[37]  Armel Le Bail,et al.  Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .

[38]  D. Dollimore The thermal decomposition of oxalates. A review , 1987 .

[39]  P. K. Smith,et al.  Controlled PuO/sub 2/ particle size from Pu(III) oxalate precipitation , 1984 .

[40]  I. Petrov,et al.  Infrared spectrum of whewellite , 1975 .

[41]  F. Weigel,et al.  The crystal structure of some lanthanide oxalate decahydrates, Ln2(C2O4)3·10H2O, with Ln = La, Ce, Pr, and Nd , 1969 .

[42]  H. Hendrickson Comparison of the metal-binding properties of nitrilotri(methylenephosphonic) acid and nitrilotriacetic acid: calcium(II), nickel(II,), iron(III), and thorium(IV) complexes , 1967 .

[43]  K. Nakamoto,et al.  Infrared Spectra of Metal Chelate Compounds. VII. Normal Coordinate Treatments on 1:2 and 1:3 Oxalato Complexes , 1962 .