Target-Pathogen: a structural bioinformatic approach to prioritize drug targets in pathogens

Abstract Available genomic data for pathogens has created new opportunities for drug discovery and development to fight them, including new resistant and multiresistant strains. In particular structural data must be integrated with both, gene information and experimental results. In this sense, there is a lack of an online resource that allows genome wide-based data consolidation from diverse sources together with thorough bioinformatic analysis that allows easy filtering and scoring for fast target selection for drug discovery. Here, we present Target-Pathogen database (http://target.sbg.qb.fcen.uba.ar/patho), designed and developed as an online resource that allows the integration and weighting of protein information such as: function, metabolic role, off-targeting, structural properties including druggability, essentiality and omic experiments, to facilitate the identification and prioritization of candidate drug targets in pathogens. We include in the database 10 genomes of some of the most relevant microorganisms for human health (Mycobacterium tuberculosis, Mycobacterium leprae, Klebsiella pneumoniae, Plasmodium vivax, Toxoplasma gondii, Leishmania major, Wolbachia bancrofti, Trypanosoma brucei, Shigella dysenteriae and Schistosoma Smanosoni) and show its applicability. New genomes can be uploaded upon request.

[1]  Sean R. Eddy,et al.  nhmmer: DNA homology search with profile HMMs , 2013, Bioinform..

[2]  D. Crick,et al.  Targeting the formation of the cell wall core of M. tuberculosis. , 2007, Infectious disorders drug targets.

[3]  X. Barril,et al.  Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. , 2010, Journal of medicinal chemistry.

[4]  Lu Huang,et al.  Update of TTD: Therapeutic Target Database , 2009, Nucleic Acids Res..

[5]  Esteban Lanzarotti,et al.  A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis. , 2016, Tuberculosis.

[6]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[7]  Peter D. Karp,et al.  Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology , 2016, Briefings Bioinform..

[8]  Adam M. Phillippy,et al.  Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.

[9]  P. Fernandes,et al.  The global challenge of new classes of antibacterial agents: an industry perspective. , 2015, Current opinion in pharmacology.

[10]  Daniel R. Caffrey,et al.  Structure-based maximal affinity model predicts small-molecule druggability , 2007, Nature Biotechnology.

[11]  Michele Magrane,et al.  Searching and Navigating UniProt Databases , 2015, Current protocols in bioinformatics.

[12]  Janet M. Thornton,et al.  The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes , 2013, Nucleic Acids Res..

[13]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[14]  Philip E. Bourne,et al.  A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand binding sites , 2007, BMC Bioinformatics.

[15]  L. Stein,et al.  JBrowse: a next-generation genome browser. , 2009, Genome research.

[16]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[17]  Pablo Ivan Pereira Ramos,et al.  The polymyxin B-induced transcriptomic response of a clinical, multidrug-resistant Klebsiella pneumoniae involves multiple regulatory elements and intracellular targets , 2016, BMC Genomics.

[18]  The UniProt Consortium,et al.  The Universal Protein Resource (UniProt) 2009 , 2008, Nucleic Acids Res..

[19]  Amjad Ali,et al.  A Novel Comparative Genomics Analysis for Common Drug and Vaccine Targets in Corynebacterium pseudotuberculosis and other CMN Group of Human Pathogens , 2011, Chemical biology & drug design.

[20]  Kalidas Yeturu,et al.  targetTB: A target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis , 2008, BMC Systems Biology.

[21]  F. Javier Luque,et al.  TuberQ: a Mycobacterium tuberculosis protein druggability database , 2014, Database J. Biol. Databases Curation.

[22]  John D. Westbrook,et al.  TargetDB: a target registration database for structural genomics projects , 2004, Bioinform..

[23]  Tyler J. Curiel,et al.  Parasite Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat Human Protozoan Pathogens , 2011, Journal of signal transduction.

[24]  Haruki Nakamura,et al.  Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. , 2017, Methods in molecular biology.

[25]  Yan Lin,et al.  DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements , 2013, Nucleic Acids Res..

[26]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[27]  Mallikarjuna Rao Gedda,et al.  Limitations of Current Therapeutic Options, Possible Drug Targets and Scope of Natural Products in Control of Leishmaniasis. , 2017, Mini reviews in medicinal chemistry.

[28]  Vincent Le Guilloux,et al.  fpocket: online tools for protein ensemble pocket detection and tracking , 2010, Nucleic Acids Res..

[29]  Preetam Ghosh,et al.  Conserved host-pathogen PPIs. Globally conserved inter-species bacterial PPIs based conserved host-pathogen interactome derived novel target in C. pseudotuberculosis, C. diphtheriae, M. tuberculosis, C. ulcerans, Y. pestis, and E. coli targeted by Piper betel compounds. , 2013, Integrative biology : quantitative biosciences from nano to macro.

[30]  C. Naula,et al.  Protein kinases as drug targets in trypanosomes and Leishmania. , 2005, Biochimica et biophysica acta.

[31]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[32]  Amos Bairoch,et al.  The ENZYME database in 2000 , 2000, Nucleic Acids Res..

[33]  Ren Zhang,et al.  DEG: a database of essential genes. , 2004, Nucleic acids research.

[34]  R. Wenzel,et al.  The antibiotic pipeline--challenges, costs, and values. , 2004, The New England journal of medicine.

[35]  A. Demain,et al.  The antibiotic resistance crisis, with a focus on the United States , 2017, The Journal of Antibiotics.

[36]  Hong-Yu Ou,et al.  EG: a database of essential genes , 2004, Nucleic Acids Res..

[37]  Kunchur Guruprasad,et al.  Computational tools for the analysis of heteroatom groups and their neighbours in protein tertiary structure. , 2005, International journal of biological macromolecules.

[38]  Xiaomin Luo,et al.  PDTD: a web-accessible protein database for drug target identification , 2008, BMC Bioinformatics.

[39]  Jian Li,et al.  Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. , 2007, The Journal of antimicrobial chemotherapy.

[40]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[41]  Gene Ontology Consortium The Gene Ontology (GO) database and informatics resource , 2003 .

[42]  David S. Roos,et al.  TDR Targets: a chemogenomics resource for neglected diseases , 2011, Nucleic Acids Res..

[43]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[44]  V. Lacroix,et al.  An Introduction to Metabolic Networks and Their Structural Analysis , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[45]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Bhavna Chawla,et al.  Drug targets in Leishmania , 2010, Journal of parasitic diseases : official organ of the Indian Society for Parasitology.

[47]  R. Altman,et al.  Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. , 2004, Genome research.