A Normalized Framework for the Design of Feature Spaces Assessing the Left Ventricular Function

A through description of the left ventricle functionality requires combining complementary regional scores. A main limitation is the lack of multiparametric normality models oriented to the assessment of regional wall motion abnormalities (RWMA). This paper covers two main topics involved in RWMA assessment. We propose a general framework allowing the fusion and comparison across subjects of different regional scores. Our framework is used to explore which combination of regional scores (including 2-D motion and strains) is better suited for RWMA detection. Our statistical analysis indicates that for a proper (within interobserver variability) identification of RWMA, models should consider motion and extreme strains.

[1]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[2]  Michael K. O'Connor When the lights go on again: an unusual problem with a gamma camera. , 2000 .

[3]  Heinz-Otto Peitgen,et al.  A Comprehensive Approach to the Analysis of Contrast Enhanced Cardiac MR Images , 2008, IEEE Transactions on Medical Imaging.

[4]  S. Morita Geometry of differential forms , 2001 .

[5]  Xiang Deng,et al.  Combined tag tracking and strain reconstruction from tagged cardiac MR images without user‐defined myocardial contours , 2005, Journal of magnetic resonance imaging : JMRI.

[6]  Francesc Carreras,et al.  Variational Framework for Assessment of the Left Ventricle Motion , 2008 .

[7]  E. Zerhouni,et al.  Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. , 1988, Radiology.

[8]  Thomas S. Denney,et al.  Three-dimensional myocardial strain reconstruction from tagged MRI using a cylindrical B-spline model , 2004, IEEE Transactions on Medical Imaging.

[9]  Alejandro F. Frangi,et al.  Automated Detection of Regional Wall Motion Abnormalities Based on a Statistical Model Applied to Multislice Short-Axis Cardiac MR Images , 2009, IEEE Transactions on Medical Imaging.

[10]  M. Jerosch-Herold,et al.  An approach to the three-dimensional display of left ventricular function and viability using MRI , 2003, The International Journal of Cardiovascular Imaging.

[11]  K. Y. Esther Leung,et al.  Localized Shape Variations for Classifying Wall Motion in Echocardiograms , 2007, MICCAI.

[12]  Françoise J. Prêteux,et al.  A non-rigid registration approach for quantifying myocardial contraction in tagged MRI using generalized information measures , 2005, Medical Image Anal..

[13]  Daniel Rueckert,et al.  Spatial transformation of motion and deformation fields using nonrigid registration , 2004, IEEE Transactions on Medical Imaging.

[14]  Dimitris N. Metaxas,et al.  Preliminary validation of angle-independent myocardial elastography using MR tagging in a clinical setting. , 2008, Ultrasound in medicine & biology.

[15]  Andrew D McCulloch,et al.  Left ventricular form and function: scientific priorities and strategic planning for development of new views of disease. , 2004, Circulation.

[16]  Stuart S Berr,et al.  Reperfused myocardial infarction in mice: 3D mapping of late gadolinium enhancement and strain. , 2006, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[17]  C. Wiggers,et al.  THE EFFECT OF CORONARY OCCLUSION ON MYOCARDIAL CONTRACTION , 1935 .

[18]  Christophe Léger,et al.  Regional analysis of the left ventricle of the heart , 2006, Comput. Medical Imaging Graph..

[19]  Francesc Carreras,et al.  A Normalized Parametric Domain for the Analysis of the Left Ventricular Function , 2008, VISAPP.

[20]  Patrick Clarysse,et al.  Exploratory analysis of the spatio-temporal deformation of the myocardium during systole from tagged MRI , 2002, IEEE Transactions on Biomedical Engineering.

[21]  M K O'Connor Evaluation of motion-correction techniques in cardiac SPECT. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[22]  Andrés Santos,et al.  Unsupervised estimation of myocardial displacement from tagged MR sequences using nonrigid registration , 2008, Magnetic resonance in medicine.

[23]  Patrick Clarysse,et al.  Automatic 2D segmentation of the left ventricle in tagged cardiac MRI using motion information , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[24]  J. Alison Noble,et al.  Wall Motion Classification of Stress Echocardiography Based on Combined Rest-and-Stress Data , 2008, MICCAI.

[25]  Nicholas Ayache,et al.  Definition of a four-dimensional continuous planispheric transformation for the tracking and the analysis of left-ventricle motion , 1998, Medical Image Anal..

[26]  Daniel Rueckert,et al.  Consistent groupwise non-rigid registration for atlas construction , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[27]  Marcel Breeuwer,et al.  CoViCAD: Comprehensive Visualization of Coronary Artery Disease , 2007, IEEE Transactions on Visualization and Computer Graphics.

[28]  Jonas Crosby,et al.  New Noninvasive Method for Assessment of Left Ventricular Rotation: Speckle Tracking Echocardiography , 2005, Circulation.

[29]  Alistair A. Young,et al.  Extraction and quantification of left ventricular deformation modes , 2004, IEEE Transactions on Biomedical Engineering.

[30]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association , 2002, The international journal of cardiovascular imaging.

[31]  D. Wolfe,et al.  Nonparametric Statistical Methods. , 1974 .

[32]  L. Axel,et al.  MR imaging of motion with spatial modulation of magnetization. , 1989, Radiology.

[33]  Milan Sonka,et al.  Computer-aided diagnosis via model-based shape analysis: automated classification of wall motion abnormalities in echocardiograms. , 2005, Academic radiology.

[34]  W. O'Dell,et al.  Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. , 1995, Radiology.

[35]  Albert Hofman,et al.  Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. , 2004, European heart journal.

[36]  Patrick Clarysse,et al.  A review of cardiac image registration methods , 2002, IEEE Transactions on Medical Imaging.

[37]  E. McVeigh,et al.  Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. , 2000, Radiology.

[38]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[39]  Boudewijn P. F. Lelieveldt,et al.  Neuro-fuzzy systems for computer-aided myocardial viability assessment , 2001, IEEE Transactions on Medical Imaging.

[40]  J. Reiber,et al.  Comparison between manual and semiautomated analysis of left ventricular volume parameters from short-axis MR images. , 1997, Journal of computer assisted tomography.

[41]  W. Gaasch,et al.  Influence of Acute Changes in Preload, Aftertoad, Contractile State and Heart Rate on Eection and Isovohumlc Indices of Myocardial Contractility in Man , 1976, Circulation.

[42]  Michel Bertrand,et al.  Ultrasonic texture motion analysis: theory and simulation , 1995, IEEE Trans. Medical Imaging.

[43]  Marcel Breeuwer,et al.  The Automatic Identification of Hibernating Myocardium , 2004, MICCAI.