On counting functions and slenderness of languages

Abstract We study counting-regular languages — these are languages L for which there is a regular language L ′ such that the number of strings of length n in L and L ′ are the same for all n. We show that the languages accepted by unambiguous nondeterministic Turing machines with a one-way read-only input tape and a reversal-bounded worktape are counting-regular. Many one-way acceptors are a special case of this model, such as reversal-bounded deterministic pushdown automata, reversal-bounded deterministic queue automata, and many others, and therefore all languages accepted by these models are counting-regular. This result is the best possible in the sense that the claim does not hold for either 2-ambiguous NPDA 's, unambiguous NPDA 's with no reversal-bound, and other models. We also study closure properties of counting-regular languages, and we study decidability problems in regards to counting-regularity. For example, it is shown that the counting-regularity of even some restricted subclasses of NPDA 's is undecidable. Lastly, k-slender languages — where there are at most k words of any length — are also studied. Amongst other results, it is shown that it is decidable whether a language in any semilinear full trio is k-slender.

[1]  Oscar H. Ibarra,et al.  Semilinearity of Families of Languages , 2018, CIAA.

[2]  Giusi Castiglione,et al.  On a class of languages with holonomic generating functions , 2017, Theor. Comput. Sci..

[3]  Benedetto Intrigila,et al.  On the commutative equivalence of bounded context-free and regular languages: The code case , 2015, Theor. Comput. Sci..

[4]  Jean Berstel Sur la densité asymptotique de langages formels , 1972, ICALP.

[5]  Werner Kuich,et al.  The Characterization of Nonexpansive Grammars by Rational Power Series , 1981, Inf. Control..

[6]  Oscar H. Ibarra,et al.  Characterizations of Bounded semilinear Languages by One-Way and Two-Way Deterministic Machines , 2012, Int. J. Found. Comput. Sci..

[7]  Paolo Massazza,et al.  Holonomic Functions and Their Relation to Linearly Constrained Languages , 1993, RAIRO Theor. Informatics Appl..

[8]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[9]  Dominique Perrin,et al.  On the generating sequences of regular languages on k symbols , 2003, JACM.

[10]  Juris Hartmanis,et al.  What makes Some Language Theory Problems Undecidable , 1970, J. Comput. Syst. Sci..

[11]  Tero Harju,et al.  Some Decision Problems Concerning Semilinearity and Commutation , 2002, J. Comput. Syst. Sci..

[12]  Oscar H. Ibarra,et al.  On Store Languages of Language Acceptors , 2017, Theor. Comput. Sci..

[13]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[14]  M. W. Shields An Introduction to Automata Theory , 1988 .

[15]  Sheila A. Greibach,et al.  Checking Automata and One-Way Stack Languages , 1969, J. Comput. Syst. Sci..

[16]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[17]  Oscar H. Ibarra,et al.  On Bounded Semilinear Languages, Counter Machines, and Finite-Index ET0L , 2016, CIAA.

[18]  Juha Honkala,et al.  Decision problems concerning thinness and slenderness of formal languages , 1998, Acta Informatica.

[19]  Gheorghe Paun,et al.  Thin and Slender Languages , 1995, Discret. Appl. Math..

[20]  Nivat G. Päun,et al.  Handbook of Formal Languages , 2013, Springer Berlin Heidelberg.

[21]  Lucian Ilie On lengths of words in context-free languages , 2000, Theor. Comput. Sci..

[22]  Oscar H. Ibarra,et al.  On two-way nondeterministic finite automata with one reversal-bounded counter , 2005, Theor. Comput. Sci..

[23]  Oscar H. Ibarra,et al.  Information rate of some classes of non-regular languages: An automata-theoretic approach , 2017, Inf. Comput..

[24]  Ralf Stiebe Slender matrix languages , 1999, Developments in Language Theory.

[25]  Eitan M. Gurari,et al.  The Complexity of Decision Problems for Finite-Turn Multicounter Machines , 1981, J. Comput. Syst. Sci..

[26]  Kai Salomaa,et al.  On the existence of regular approximations , 2007, Theor. Comput. Sci..

[27]  J. Mason,et al.  Integration Using Chebyshev Polynomials , 2003 .

[28]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[29]  Bala Ravikumar,et al.  On Approximating Non-regular Languages by Regular Languages , 2011, Fundam. Informaticae.

[30]  Benedetto Intrigila,et al.  On the structure of the counting function of sparse context-free languages , 2006, Theor. Comput. Sci..

[31]  Oscar H. Ibarra,et al.  On Finite-Index Indexed Grammars and Their Restrictions , 2016, LATA.

[32]  Luca Breveglieri,et al.  Multi-Push-Down Languages and Grammars , 1996, Int. J. Found. Comput. Sci..

[33]  Philippe Flajolet,et al.  Analytic Models and Ambiguity of Context-free Languages* , 2022 .

[34]  Gheorghe Paun,et al.  Grammars with Controlled Derivations , 1997, Handbook of Formal Languages.

[35]  Grzegorz Rozenberg,et al.  On ET0L Systems of Finite Index , 1978, Inf. Control..

[36]  Tao Jiang,et al.  New Decidability Results Concerning Two-Way Counter Machines , 1995, SIAM J. Comput..

[37]  Sheila A. Greibach Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..

[38]  Martin Kutrib,et al.  Flip-Pushdown Automata: k+1 Pushdown Reversals Are Better than k , 2003, ICALP.

[39]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[40]  Benedetto Intrigila,et al.  On the commutative equivalence of bounded context-free and regular languages: The semi-linear case , 2015, Theor. Comput. Sci..

[41]  Lucian Ilie On a Conjecture about Slender Context-Free Languages , 1994, Theor. Comput. Sci..

[42]  Bala Ravikumar,et al.  Approximate Recognition of Non-regular Languages by Finite Automata , 2005, ACSC.

[43]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[44]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[45]  Benedetto Intrigila,et al.  On the commutative equivalence of semi-linear sets of Nk , 2015, Theor. Comput. Sci..

[46]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[47]  Seymour Ginsburg,et al.  Algebraic and Automata Theoretic Properties of Formal Languages , 1975 .