An investigation of two approaches to basin hopping minimization for atomic and molecular clusters

Abstract We have carried out potential energy minimization searches for atomic and molecular clusters using two variants of the basin hopping strategy. We find that the significant structures basin hopping (SSBH) performs better than the raw structures basin hopping (RSBH) when both use optimized step sizes. The SSBH was able to locate previously-identified global minima for (LJ) n ( n =19, 30, 38) and (benzene) n ( n =6, 10) The (benzene) 14 cluster minimum presented here is a new result.

[1]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[2]  H. Scheraga,et al.  Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms , 1991 .

[3]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[4]  David J. Wales,et al.  Global minima of water clusters (H2O)n, n≤21, described by an empirical potential , 1998 .

[5]  B. Hartke Global geometry optimization of clusters using genetic algorithms , 1993 .

[6]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[7]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[8]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[9]  D. L. Freeman,et al.  Reducing Quasi-Ergodic Behavior in Monte Carlo Simulations by J-Walking: Applications to Atomic Clusters , 1990 .

[10]  R. L. Somorjai,et al.  Novel approach for computing the global minimum of proteins. 2. One-dimensional test cases , 1991 .

[11]  Howard R. Mayne,et al.  Global geometry optimization of atomic clusters using a modified genetic algorithm in space‐fixed coordinates , 1996 .

[12]  J. Straub,et al.  Global energy minimum searches using an approximate solution of the imaginary time Schroedinger equation , 1993 .

[13]  Wayne Pullan,et al.  Energy minimization of mixed argon–xenon microclusters using a genetic algorithm , 1997 .

[14]  Sabre Kais,et al.  Comparison study of pivot methods for global optimization , 1997 .

[15]  New conformational search method based on local torsional deformations for cyclic molecules, loops in proteins, and dense polymer systems , 1996 .

[16]  Howard R. Mayne,et al.  A study of genetic algorithm approaches to global geometry optimization of aromatic hydrocarbon microclusters , 1998 .

[17]  Bernd Hartke,et al.  Global geometry optimization of (Ar)n and B(Ar)n clusters using a modified genetic algorithm , 1996 .

[18]  John E. Straub,et al.  Finding the needle in the haystack: algorithms for conformational optimization , 1996 .

[19]  New optimization method for conformational energy calculations on polypeptides: Conformational space annealing , 1997 .

[20]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[21]  Jianpeng Ma,et al.  Simulated annealing using coarse grained classical dynamics: Smoluchowski dynamics in the Gaussian density approximation , 1995 .

[22]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .