Molecular Vibration-Sensing Component in Human Olfaction

Whether olfaction recognizes odorants by their shape, their molecular vibrations, or both remains an open and controversial question. A convenient way to address it is to test for odor character differences between deuterated and undeuterated odorant isotopomers, since these have identical ground-state conformations but different vibrational modes. In a previous paper (Franco et al. (2011) Proc Natl Acad Sci USA 108:9, 3797-802) we showed that fruit flies can recognize the presence of deuterium in odorants by a vibrational mechanism. Here we address the question of whether humans too can distinguish deuterated and undeuterated odorants. A previous report (Keller and Vosshall (2004) Nat Neurosci 7:4, 337-8) indicated that naive subjects are incapable of distinguishing acetophenone and d-8 acetophenone. Here we confirm and extend those results to trained subjects and gas-chromatography [GC]-pure odorants. However, we also show that subjects easily distinguish deuterated and undeuterated musk odorants purified to GC-pure standard. These results are consistent with a vibrational component in human olfaction.

[1]  T. Junk,et al.  Hydrogen isotope exchange reactions involving C–H (D, T) bonds , 1997 .

[2]  Molecular orbital approach to possible discrimination of musk odor intensity , 2000 .

[3]  Karen J. Rossiter,et al.  Structure−Odor Relationships , 1996 .

[4]  G. M. Dyson The scientific basis of odour , 1938 .

[5]  C. Sell,et al.  On the unpredictability of odor. , 2006, Angewandte Chemie.

[6]  D. Rowe Chemistry and technology of flavors and fragrances. , 2004 .

[7]  Y. Monguchi,et al.  Mild and efficient H/D exchange of alkanes based on C-H activation catalyzed by rhodium on charcoal. , 2008, Angewandte Chemie.

[8]  John B. O. Mitchell,et al.  A structure-odour relationship study using EVA descriptors and hierarchical clustering. , 2004, Organic & biomolecular chemistry.

[9]  Albert Baur,et al.  Studien über den künstlichen Moschus , 1891 .

[10]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[11]  L. Vosshall,et al.  A psychophysical test of the vibration theory of olfaction , 2004, Nature Neuroscience.

[12]  Linus Pauling,et al.  Analogies between Antibodies and Simpler Chemical Substances , 1946 .

[13]  J. Amoore,et al.  CURRENT STATUS OF THE STERIC THEORY OF ODOR , 1964, Annals of the New York Academy of Sciences.

[14]  H L Klopping,et al.  Olfactory theories and the odors of small molecules. , 1971, Journal of agricultural and food chemistry.

[15]  G. Ohloff,et al.  Structure-Odor Relationships , 1994 .

[16]  A. Williams The Synthesis of Macrocyclic Musks , 1999 .

[17]  B. Cowart Taste dysfunction: a practical guide for oral medicine. , 2011, Oral diseases.

[18]  L. Turin,et al.  A spectroscopic mechanism for primary olfactory reception. , 1996, Chemical senses.

[19]  Klaus Schulten,et al.  Vibrationally assisted electron transfer mechanism of olfaction: myth or reality? , 2012, Physical chemistry chemical physics : PCCP.

[20]  B. Mookherjee,et al.  12 – The Chemistry and Fragrance of Natural Musk Compounds , 1982 .

[21]  R. H. Wright,et al.  Odour and Molecular Vibration , 1966, Nature.

[22]  P. Bedoukian Perfumery and Flavoring Synthetics , 1986 .

[23]  M. I. Franco,et al.  Molecular vibration-sensing component in Drosophila melanogaster olfaction , 2011, Proceedings of the National Academy of Sciences.

[24]  Jeffrey B. Harborne,et al.  Common fragrance and flavor materials , 1998 .

[25]  A. Gilbert,et al.  Odor perception phenotypes: multiple, specific hyperosmias to musks. , 1996, Chemical senses.

[26]  C. Schal,et al.  A Simple, Convenient, and Efficient Preparative GC System that Uses a Short Megabore Capillary Column as a Trap , 2008, Journal of Chemical Ecology.

[27]  D. G. Walmsley Inelastic Electron Tunnelling Spectroscopy , 1980 .

[28]  Luca Turin,et al.  Structure-odor relations : a modern perspective , 2001 .

[29]  L. Turin,et al.  A method for the calculation of odor character from molecular structure. , 2002, Journal of theoretical biology.

[30]  Manuel Zarzo,et al.  The sense of smell: molecular basis of odorant recognition , 2007, Biological reviews of the Cambridge Philosophical Society.

[31]  H. Bestmann,et al.  Elektrophysiologische Messungen mit deuterierten Pheromonen zum Nachweis eines Isotopieeffektes , 1989, The Science of Nature.

[32]  A. Comfort Odour-Blindness to Musk: Simple Recessive Inheritance , 1973, Nature.

[33]  V. Yaylayan,et al.  Investigation of vibrational theory of olfaction with variously labelled benzaldehydes , 2001 .

[34]  Linda B. Buck,et al.  A Large-Scale Analysis of Odor Coding in the Olfactory Epithelium , 2011, The Journal of Neuroscience.

[35]  Horst Surburg,et al.  Common fragrance and flavor materials , 1985 .

[36]  I. Bersuker,et al.  ORIGIN OF MUSK FRAGRANCE ACTIVITY : THE ELECTRON-TOPOLOGIC APPROACH , 1991 .

[37]  D. Wade Deuterium isotope effects on noncovalent interactions between molecules. , 1999, Chemico-biological interactions.

[38]  A M Stoneham,et al.  Could humans recognize odor by phonon assisted tunneling? , 2007, Physical review letters.

[39]  M Chastrette,et al.  Tetralin, indan and nitrobenzene compound structure-musk odor relationship using neural networks , 1995 .

[40]  E. Bittner,et al.  Quantum origins of molecular recognition and olfaction in Drosophila. , 2012, The Journal of chemical physics.