Focus 3D: Compressive accommodation display

We present a glasses-free 3D display design with the potential to provide viewers with nearly correct accommodative depth cues, as well as motion parallax and binocular cues. Building on multilayer attenuator and directional backlight architectures, the proposed design achieves the high angular resolution needed for accommodation by placing spatial light modulators about a large lens: one conjugate to the viewer's eye, and one or more near the plane of the lens. Nonnegative tensor factorization is used to compress a high angular resolution light field into a set of masks that can be displayed on a pair of commodity LCD panels. By constraining the tensor factorization to preserve only those light rays seen by the viewer, we effectively steer narrow high-resolution viewing cones into the user's eyes, allowing binocular disparity, motion parallax, and the potential for nearly correct accommodation over a wide field of view. We verify the design experimentally by focusing a camera at different depths about a prototype display, establish formal upper bounds on the design's accommodation range and diffraction-limited performance, and discuss practical limitations that must be overcome to allow the device to be used with human observers.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, ACM Trans. Graph..

[3]  Douglas Lanman,et al.  Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization , 2010, ACM Trans. Graph..

[4]  Tatsuo Uchida,et al.  13.2: The 3D Display Using Field‐Sequential LCD with Light Direction Controlling Back‐light , 2001 .

[5]  Gregg E. Favalora Volumetric 3D displays and application infrastructure , 2005, Computer.

[6]  Hironobu Gotoda Reduction of image blurring in an autostereoscopic multilayer liquid crystal display , 2011, Electronic Imaging.

[7]  Daniel G. Aliaga,et al.  Tailored displays to compensate for visual aberrations , 2012, ACM Trans. Graph..

[8]  Martin S Banks,et al.  Stereo display with time-multiplexed focal adjustment , 2009, Electronic Imaging.

[9]  Douglas Lanman,et al.  Correcting for optical aberrations using multilayer displays , 2012, ACM Trans. Graph..

[10]  Neil Emerton,et al.  Wedge Optics in Flat Panel Displays , 2013, Proceedings of the IEEE.

[11]  Hideshi Yamada,et al.  Rendering for an Interactive 360 ◦ Light Field Display , 2007 .

[12]  Martin S Banks,et al.  Focus information is used to interpret binocular images. , 2010, Journal of vision.

[13]  Gordon Wetzstein,et al.  Adaptive image synthesis for compressive displays , 2013, ACM Trans. Graph..

[14]  Yasuhiro Takaki,et al.  High-Density Directional Display for Generating Natural Three-Dimensional Images , 2006, Proceedings of the IEEE.

[15]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, SIGGRAPH 2004.

[16]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, SIGGRAPH 2011.

[17]  Hideshi Yamada,et al.  Rendering for an interactive 360° light field display , 2007, ACM Trans. Graph..

[18]  Andrew E. Johnson,et al.  Advances in the Dynallax Solid-State Dynamic Parallax Barrier Autostereoscopic Visualization Display System , 2008, IEEE Transactions on Visualization and Computer Graphics.

[19]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[20]  A. Travis Autostereoscopic 3-D display. , 1990, Applied optics.

[21]  A. Sullivan 58.3: A Solid‐state Multi‐planar Volumetric Display , 2003 .

[22]  Gordon Wetzstein,et al.  Polarization fields: dynamic light field display using multi-layer LCDs , 2011, SA '11.

[23]  Andrey N. Putilin,et al.  Stereodisplay with neural network image processing , 2001, International Symposium on Advanced Display Technologies.

[24]  Robert L. Brott,et al.  16.3: Directional Backlight Lightguide Considerations for Full Resolution Autostereoscopic 3D Displays , 2010 .

[25]  Nobuyuki Miyake,et al.  Stereoscopic 3‐D display with optical correction for the reduction of the discrepancy between accommodation and convergence , 2005 .

[26]  Gordon Wetzstein,et al.  Compressive light field photography using overcomplete dictionaries and optimized projections , 2013, ACM Trans. Graph..

[27]  Nesbitt W. Hagood,et al.  35.5L: Late‐News Paper: A Direct‐View MEMS Display for Mobile Applications , 2007 .

[28]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, ACM Trans. Graph..

[29]  Y. Takaki,et al.  Super multi-view display with a lower resolution flat-panel display. , 2011, Optics express.

[30]  Feihong Yu,et al.  Point spread function characteristics analysis of the wavefront coding system. , 2007, Optics express.

[31]  Armin Schwerdtner,et al.  Technical solutions for a full-resolution autostereoscopic 2D/3D display technology , 2008, Electronic Imaging.

[32]  G. Lippmann Epreuves reversibles donnant la sensation du relief , 1908 .

[33]  Hyunkyung Kwon,et al.  A time-sequential multiview autostereoscopic display without resolution loss using a multi-directional backlight unit and an LCD panel , 2012, Electronic Imaging.

[34]  Hironobu Gotoda A multilayer liquid crystal display for autostereoscopic 3D viewing , 2010, Electronic Imaging.

[35]  Frédo Durand,et al.  Antialiasing for automultiscopic 3D displays , 2006, EGSR '06.

[36]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[37]  Gordon Wetzstein,et al.  Tensor displays , 2012, ACM Trans. Graph..

[38]  Gregg E. Favalora,et al.  Occlusion-capable multiview volumetric three-dimensional display. , 2007, Applied optics.

[39]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[40]  Han-Ping D. Shieh,et al.  3‐D mobile display based on dual‐directional light guides with a fast‐switching liquid‐crystal panel , 2005 .

[41]  Ken Perlin,et al.  An autostereoscopic display , 2000, SIGGRAPH.

[42]  Ko-Wei Chien,et al.  Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays. , 2006, Applied optics.