Antimicrobial activity of metals: mechanisms, molecular targets and applications

[1]  Ashraf Ibrahim,et al.  Gold biomineralization by a metallophore from a gold-associated microbe. , 2013, Nature chemical biology.

[2]  K. Williams,et al.  Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth , 2012, The ISME Journal.

[3]  L. Hoffman,et al.  Cystic fibrosis therapeutics: the road ahead. , 2013, Chest.

[4]  Susmita Bandyopadhyay,et al.  Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques. , 2012, Journal of hazardous materials.

[5]  C. William Keevil,et al.  Horizontal Transfer of Antibiotic Resistance Genes on Abiotic Touch Surfaces: Implications for Public Health , 2012, mBio.

[6]  A. Gedanken,et al.  Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. , 2012, Small.

[7]  Dan S. Tawfik,et al.  The molecular basis of phosphate discrimination in arsenate-rich environments , 2012, Nature.

[8]  G. Deacon,et al.  Remarkable in vitro bactericidal activity of bismuth(III) sulfonates against Helicobacter pylori. , 2012, Dalton transactions.

[9]  Pedro J J Alvarez,et al.  Negligible particle-specific antibacterial activity of silver nanoparticles. , 2012, Nano letters.

[10]  J. Crowley,et al.  The siderophore yersiniabactin binds copper to protect pathogens during infection , 2012, Nature chemical biology.

[11]  I. Schalk,et al.  The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. , 2012, Environmental microbiology.

[12]  S. Warnes,et al.  Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. , 2012, Environmental microbiology.

[13]  J. Maillard,et al.  Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. , 2012, The Journal of antimicrobial chemotherapy.

[14]  J. Pérez-Donoso,et al.  Tellurite enters Escherichia coli mainly through the PitA phosphate transporter , 2012, MicrobiologyOpen.

[15]  Hong Liang,et al.  Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin , 2012, Journal of Nanobiotechnology.

[16]  J. Valentine,et al.  Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds , 2012, Proceedings of the National Academy of Sciences.

[17]  J. Imlay,et al.  Mononuclear Iron Enzymes Are Primary Targets of Hydrogen Peroxide Stress* , 2012, The Journal of Biological Chemistry.

[18]  J. Imlay,et al.  Silver(I), Mercury(II), Cadmium(II), and Zinc(II) Target Exposed Enzymic Iron-Sulfur Clusters when They Toxify Escherichia coli , 2012, Applied and Environmental Microbiology.

[19]  N. Gadura,et al.  Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli , 2012, Applied and Environmental Microbiology.

[20]  Zoraida P. Aguilar,et al.  Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7 , 2012, BioMetals.

[21]  R. Hausinger,et al.  Fructose‐1,6‐bisphosphate aldolase (class II) is the primary site of nickel toxicity in Escherichia coli , 2011, Molecular microbiology.

[22]  I. Schalk,et al.  New roles for bacterial siderophores in metal transport and tolerance. , 2011, Environmental microbiology.

[23]  G. Stacey,et al.  Bacterial outer membrane channel for divalent metal ion acquisition , 2011, Proceedings of the National Academy of Sciences.

[24]  R. Amal,et al.  Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. , 2011, ACS nano.

[25]  S. Warnes,et al.  Mechanism of Copper Surface Toxicity in Vancomycin-Resistant Enterococci following Wet or Dry Surface Contact , 2011, Applied and Environmental Microbiology.

[26]  J. Helmann,et al.  Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis. , 2011, Antioxidants & redox signaling.

[27]  P. Malfertheiner,et al.  Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy: a randomised, open-label, non-inferiority, phase 3 trial , 2011, The Lancet.

[28]  Y. Bertsova,et al.  Cys377 residue in NqrF subunit confers Ag+ sensitivity of Na+-translocating NADH:quinone oxidoreductase from Vibrio harveyi , 2011, Biochemistry (Moscow).

[29]  Kirk G Scheckel,et al.  Surface charge-dependent toxicity of silver nanoparticles. , 2011, Environmental science & technology.

[30]  Christopher Rensing,et al.  Metallic Copper as an Antimicrobial Surface , 2010, Applied and Environmental Microbiology.

[31]  Christian G Elowsky,et al.  Bacterial Killing by Dry Metallic Copper Surfaces , 2010, Applied and Environmental Microbiology.

[32]  Christian G Elowsky,et al.  Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces , 2010, Applied and Environmental Microbiology.

[33]  M. L. López,et al.  Critical assessment of OmpF channel selectivity: merging information from different experimental protocols , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  D. Fu,et al.  Selective Electrodiffusion of Zinc Ions in a Zrt-, Irt-like Protein, ZIPB*♦ , 2010, The Journal of Biological Chemistry.

[35]  R. Landmann,et al.  Silver Coordination Polymers for Prevention of Implant Infection: Thiol Interaction, Impact on Respiratory Chain Enzymes, and Hydroxyl Radical Induction , 2010, Antimicrobial Agents and Chemotherapy.

[36]  G. Sotiriou,et al.  Antibacterial activity of nanosilver ions and particles. , 2010, Environmental science & technology.

[37]  V. Appanna,et al.  Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity. , 2010, Environmental microbiology.

[38]  L. Tikana,et al.  Survival of bacteria on metallic copper surfaces in a hospital trial , 2010, Applied Microbiology and Biotechnology.

[39]  A. Anzueto,et al.  Association between a silver-coated endotracheal tube and reduced mortality in patients with ventilator-associated pneumonia. , 2010, Chest.

[40]  G. Gadd Metals, minerals and microbes: geomicrobiology and bioremediation. , 2010, Microbiology.

[41]  D. Giedroc,et al.  Coordination Chemistry of Bacterial Metal Transport and Sensing , 2010 .

[42]  Ke Karlovu,et al.  The bactericidal effect of silver nanoparticles , 2010 .

[43]  D. Zannoni,et al.  Acetate Permease (ActP) Is Responsible for Tellurite (TeO32−) Uptake and Resistance in Cells of the Facultative Phototroph Rhodobacter capsulatus , 2009, Applied and Environmental Microbiology.

[44]  Shengchang Su,et al.  Gallium Disrupts Iron Uptake by Intracellular and Extracellular Francisella Strains and Exhibits Therapeutic Efficacy in a Murine Pulmonary Infection Model , 2009, Antimicrobial Agents and Chemotherapy.

[45]  H. Satoh,et al.  Genotoxicity Studies of Heavy Metals: Lead, Bismuth, Indium, Silver and Antimony , 2009, Journal of occupational health.

[46]  V. Tremaroli,et al.  Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance. , 2009, Environmental microbiology.

[47]  G. Borkow,et al.  Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections , 2009 .

[48]  Kathryn L Haas,et al.  Application of metal coordination chemistry to explore and manipulate cell biology. , 2009, Chemical reviews.

[49]  Dianne Ford,et al.  Metalloproteins and metal sensing , 2009, Nature.

[50]  J. Alexander,et al.  History of the medical use of silver. , 2009, Surgical infections.

[51]  I. Calderón,et al.  Tellurite-mediated disabling of [4Fe-4S] clusters of Escherichia coli dehydratases. , 2009, Microbiology.

[52]  J. Imlay,et al.  The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity , 2009, Proceedings of the National Academy of Sciences.

[53]  T. Lebeau,et al.  New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. , 2009, Environmental Microbiology.

[54]  S. Varghese,et al.  Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli , 2009, Molecular microbiology.

[55]  I. Schalk,et al.  The Pseudomonas aeruginosa Pyochelin-Iron Uptake Pathway and Its Metal Specificity , 2009, Journal of bacteriology.

[56]  J. Hahn,et al.  Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. , 2009, Water research.

[57]  F. Morel,et al.  High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens , 2009 .

[58]  V. Sharma,et al.  Silver nanoparticles: green synthesis and their antimicrobial activities. , 2009, Advances in colloid and interface science.

[59]  N. Brown,et al.  Sequence and Analysis of a Plasmid-Encoded Mercury Resistance Operon from Mycobacterium marinum Identifies MerH, a New Mercuric Ion Transporter , 2008, Journal of bacteriology.

[60]  M. Rai,et al.  Silver nanoparticles as a new generation of antimicrobials. , 2009, Biotechnology advances.

[61]  K. Waldron,et al.  How do bacterial cells ensure that metalloproteins get the correct metal? , 2009, Nature Reviews Microbiology.

[62]  Qingshan Shi,et al.  Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli , 2009, Applied Microbiology and Biotechnology.

[63]  A. Schmidt,et al.  Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. , 2008, Chemosphere.

[64]  C. Junot,et al.  Chromate causes sulfur starvation in yeast. , 2008, Toxicological sciences : an official journal of the Society of Toxicology.

[65]  E. Greenberg,et al.  The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent , 2008, Proceedings of the National Academy of Sciences.

[66]  A. Anzueto,et al.  Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. , 2008, JAMA.

[67]  Dietrich H. Nies,et al.  Glutathione and Transition-Metal Homeostasis in Escherichia coli , 2008, Journal of bacteriology.

[68]  Kerstin Helbig,et al.  Cadmium Toxicity in Glutathione Mutants of Escherichia coli , 2008, Journal of bacteriology.

[69]  H. Ceri,et al.  Copper and Quaternary Ammonium Cations Exert Synergistic Bactericidal and Antibiofilm Activity against Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[70]  C. Vandecasteele,et al.  Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: A review , 2008 .

[71]  Siddhartha P Duttagupta,et al.  Strain specificity in antimicrobial activity of silver and copper nanoparticles. , 2008, Acta biomaterialia.

[72]  Thomas Wichard,et al.  Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores , 2008 .

[73]  Pierre R. Bushel,et al.  Global Transcriptome and Deletome Profiles of Yeast Exposed to Transition Metals , 2008, PLoS genetics.

[74]  C. Rock,et al.  Membrane lipid homeostasis in bacteria , 2008, Nature Reviews Microbiology.

[75]  Y. Park,et al.  Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli , 2008, Applied and Environmental Microbiology.

[76]  H. Ceri,et al.  Pseudomonas fluorescens' view of the periodic table. , 2007, Environmental microbiology.

[77]  D. Zannoni,et al.  The bacterial response to the chalcogen metalloids Se and Te. , 2008, Advances in microbial physiology.

[78]  H. Ceri,et al.  Multimetal resistance and tolerance in microbial biofilms , 2007, Nature Reviews Microbiology.

[79]  Pradeep K. Singh,et al.  The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. , 2007, The Journal of clinical investigation.

[80]  I. Calderón,et al.  Bacterial Toxicity of Potassium Tellurite: Unveiling an Ancient Enigma , 2007, PloS one.

[81]  J. Song,et al.  Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli , 2007, Applied and Environmental Microbiology.

[82]  C. Rensing,et al.  Intracellular Copper Does Not Catalyze the Formation of Oxidative DNA Damage in Escherichia coli , 2006, Journal of bacteriology.

[83]  M. Parsek,et al.  Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[84]  Murray Wolinsky,et al.  Response to Comment by Volkov et al. on "Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil" , 2006, Science.

[85]  S. Silver,et al.  Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds , 2006, Journal of Industrial Microbiology and Biotechnology.

[86]  Chi-Ming Che,et al.  Proteomic analysis of the mode of antibacterial action of silver nanoparticles. , 2006, Journal of proteome research.

[87]  M. Valko,et al.  Free radicals, metals and antioxidants in oxidative stress-induced cancer. , 2006, Chemico-biological interactions.

[88]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[89]  S. Wilks,et al.  The survival of Escherichia coli O157 on a range of metal surfaces. , 2005, International journal of food microbiology.

[90]  Keita Hara,et al.  Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis , 2005, Applied and Environmental Microbiology.

[91]  D. Hassett,et al.  Global Analysis of Cellular Factors and Responses Involved in Pseudomonas aeruginosa Resistance to Arsenite , 2005, Journal of bacteriology.

[92]  S. Avery,et al.  Oxidative protein damage causes chromium toxicity in yeast. , 2005, Microbiology.

[93]  M. Cronin,et al.  Metals, toxicity and oxidative stress. , 2005, Current medicinal chemistry.

[94]  V. Yam,et al.  Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. , 2005, The journal of physical chemistry. B.

[95]  M. Maguire,et al.  The Metal Permease ZupT from Escherichia coli Is a Transporter with a Broad Substrate Spectrum , 2005, Journal of bacteriology.

[96]  V. Appanna,et al.  Aluminum Triggers Decreased Aconitase Activity via Fe-S Cluster Disruption and the Overexpression of Isocitrate Dehydrogenase and Isocitrate Lyase , 2005, Journal of Biological Chemistry.

[97]  Credé Die Verhütung der Augenentzündung der Neugeborenen , 1881, Archiv für Gynäkologie.

[98]  J. Sims,et al.  On the treatment of vesico-vaginal fistula , 2005, International Urogynecology Journal.

[99]  H. Ceri,et al.  Biofilm susceptibility to metal toxicity. , 2004, Environmental microbiology.

[100]  D. Rioux,et al.  Ultrastructural Alterations of Erwinia carotovora subsp. atroseptica Caused by Treatment with Aluminum Chloride and Sodium Metabisulfite , 2004, Applied and Environmental Microbiology.

[101]  Andrew J. Nowalk,et al.  The hFbpABC Transporter from Haemophilus influenzae Functions as a Binding-Protein-Dependent ABC Transporter with High Specificity and Affinity for Ferric Iron , 2004, Journal of bacteriology.

[102]  B. Dixon Pushing Bordeaux mixture. , 2004, The Lancet. Infectious diseases.

[103]  I. Sondi,et al.  Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. , 2004, Journal of colloid and interface science.

[104]  Antonio Rosato,et al.  A hint to search for metalloproteins in gene banks , 2004, Bioinform..

[105]  B. Rosen,et al.  As(III) and Sb(III) Uptake by GlpF and Efflux by ArsB in Escherichia coli* , 2004, Journal of Biological Chemistry.

[106]  P. Ayres Alexis Millardet: France's forgotten mycologist , 2004 .

[107]  J. Imlay,et al.  Pathways of oxidative damage. , 2003, Annual review of microbiology.

[108]  L. T. Jensen,et al.  The Saccharomyces cerevisiae High Affinity Phosphate Transporter Encoded by PHO84 Also Functions in Manganese Homeostasis* , 2003, Journal of Biological Chemistry.

[109]  A. Mondragón,et al.  Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR , 2003, Science.

[110]  V. Yu,et al.  Experiences of the first 16 hospitals using copper-silver ionization for Legionella control: implications for the evaluation of other disinfection modalities. , 2003, Infection control and hospital epidemiology.

[111]  E. Stadtman,et al.  Free radical-mediated oxidation of free amino acids and amino acid residues in proteins , 2003, Amino Acids.

[112]  Susan M. Miller,et al.  Bacterial mercury resistance from atoms to ecosystems. , 2003, FEMS microbiology reviews.

[113]  D. Nies,et al.  Efflux-mediated heavy metal resistance in prokaryotes. , 2003, FEMS microbiology reviews.

[114]  Thomas V. O'Halloran,et al.  Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors , 2003, Science.

[115]  M. A. Carrondo Ferritins, iron uptake and storage from the bacterioferritin viewpoint , 2003, The EMBO journal.

[116]  Younan Xia,et al.  Shape‐Controlled Synthesis of Gold and Silver Nanoparticles. , 2003 .

[117]  Matija Strlič,et al.  A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH , 2003 .

[118]  C. Häse,et al.  Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio cholerae , 2002, Antimicrobial Agents and Chemotherapy.

[119]  K. Klabunde,et al.  Metal Oxide Nanoparticles as Bactericidal Agents , 2002 .

[120]  Michel Werner,et al.  Sulfur sparing in the yeast proteome in response to sulfur demand. , 2002, Molecular cell.

[121]  D. Prieur,et al.  The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. , 2001, Research in microbiology.

[122]  C. Outten,et al.  Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis , 2001, Science.

[123]  Markus J. Tamás,et al.  The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae , 2001, Molecular microbiology.

[124]  F. Cui,et al.  A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. , 2000, Journal of biomedical materials research.

[125]  Oladele A. Ogunseitan,et al.  Microbial δ-aminolevulinate dehydratase as a biosensor of lead bioavailability in contaminated environments. , 2000 .

[126]  Adiel Cohen,et al.  The Family of SMF Metal Ion Transporters in Yeast Cells* , 2000, The Journal of Biological Chemistry.

[127]  M. Saier A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters , 2000, Microbiology and Molecular Biology Reviews.

[128]  S. J. Beard,et al.  Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. , 2000, FEMS microbiology letters.

[129]  S. Cole,et al.  Identification of the Escherichia coli K‐12 Nramp orthologue (MntH) as a selective divalent metal ion transporter , 2000, Molecular microbiology.

[130]  T. Nunoshiba,et al.  Role of Iron and Superoxide for Generation of Hydroxyl Radical, Oxidative DNA Lesions, and Mutagenesis in Escherichia coli * , 1999, The Journal of Biological Chemistry.

[131]  Shaolin Chen,et al.  Cloning, Expression, and Characterization of Cadmium and Manganese Uptake Genes from Lactobacillus plantarum , 1999, Applied and Environmental Microbiology.

[132]  D. Nies,et al.  Microbial heavy-metal resistance , 1999, Applied Microbiology and Biotechnology.

[133]  J. Elmore,et al.  The Efficacy of Silver Alloy-Coated Urinary Catheters in Preventing Urinary Tract Infection: A Meta-Analysis , 1999 .

[134]  I. Stojiljković,et al.  Non‐iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria , 1999, Molecular microbiology.

[135]  R. Burrell,et al.  Wound management in an era of increasing bacterial antibiotic resistance: a role for topical silver treatment. , 1998, American journal of infection control.

[136]  J. Beckwith,et al.  Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins , 1998, The EMBO journal.

[137]  J. Cooper,et al.  X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase , 1997, Nature Structural Biology.

[138]  D. C. Read,et al.  Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions , 1997, Letters in applied microbiology.

[139]  S. Avery,et al.  Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation , 1997, Applied and environmental microbiology.

[140]  C. Rensing,et al.  Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli , 1997, Journal of bacteriology.

[141]  J. Imlay,et al.  Superoxide accelerates DNA damage by elevating free-iron levels. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[142]  H. Allen,et al.  The importance of trace metal speciation to water quality criteria , 1996 .

[143]  H. Woo,et al.  The treatment of vesicovaginal fistulae. , 1996, European urology.

[144]  S. Silver,et al.  Bacterial heavy metal resistance: new surprises. , 1996, Annual review of microbiology.

[145]  D. Touati,et al.  Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase , 1995, Journal of bacteriology.

[146]  M. Nakamura,et al.  Mechanism of chromium(VI) toxicity in Escherichia coli: is hydrogen peroxide essential in Cr(VI) toxicity? , 1995, Journal of biochemistry.

[147]  D. Bagchi,et al.  Oxidative mechanisms in the toxicity of metal ions. , 1995, Free radical biology & medicine.

[148]  G. Rotilio,et al.  Purification and characterization of Ag,Zn-superoxide dismutase from Saccharomyces cerevisiae exposed to silver. , 1994, The Journal of biological chemistry.

[149]  E. Stadtman,et al.  Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. , 1993, Annual review of biochemistry.

[150]  T. Clarkson Molecular and ionic mimicry of toxic metals. , 1993, Annual review of pharmacology and toxicology.

[151]  D. Janero,et al.  Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. , 1990, Free radical biology & medicine.

[152]  G. W. Bailey,et al.  Bacterial sorption of heavy metals , 1989, Applied and environmental microbiology.

[153]  S. Linn,et al.  Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. , 1988, Science.

[154]  P. Wong Mutagenicity of heavy metals , 1988, Bulletin of environmental contamination and toxicology.

[155]  Ralph G. Pearson,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[156]  H. Rogers,et al.  Antibacterial effect of the scandium and indium complexes of enterochelin on Escherichia coli. , 1982, Journal of general microbiology.

[157]  K. Jennette,et al.  The role of metals in carcinogenesis: biochemistry and metabolism. , 1981, Environmental health perspectives.

[158]  V. Braun,et al.  Citrate-dependent iron transport system in Escherichia coli K-12. , 1981, European journal of biochemistry.

[159]  M. Malamy,et al.  Effect of arsenate on inorganic phosphate transport in Escherichia coli , 1980, Journal of bacteriology.

[160]  H. Allen,et al.  Metal speciation. Effects on aquatic toxicity. , 1980, Environmental science & technology.

[161]  B A Bridges,et al.  Use of a simplified fluctuation test to detect low levels of mutagens. , 1976, Mutation research.

[162]  H. Nishioka Mutagenic activities of metal compounds in bacteria. , 1975, Mutation research.

[163]  P. Bragg,et al.  The effect of silver ions on the respiratory chain of Escherichia coli. , 1974, Canadian journal of microbiology.

[164]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[165]  R. Ercole,et al.  [Treatment of vesicovaginal fistula]. , 1955, Revista argentina de urologia.

[166]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .

[167]  A. Frazer TELLURIUM IN THE TREATMENT OF SYPHILIS. , 1930 .

[168]  E. L. Keyes THE TREATMENT OF GONORRHEA OF THE MALE URETHRA , 1920 .

[169]  P. Ehrlich,et al.  Über das salzsaure 3.3′-Diamino-4.4′-dioxy-arsenobenzol und seine nächsten Verwandten , 1912 .

[170]  THE VALUE OF MERCURIC CHLORIDE AS A DISINFECTANT. , 1889, Science.