Cancelable Fingerprint Cryptosystem Using Multiple Spiral Curves and Fuzzy Commitment Scheme

The increased use of biometric-based authentication systems in a variety of applications has made biometric template protection an important issue. Unlike conventional systems, biometric cannot be revoked or changed. This made template protection a critical issue to be considered in the recent years. This paper proposes a cancelable fingerprint cryptosystem using multiple spiral curves and fuzzy commitment scheme. The method is built by combining cancelable biometrics and biometric cryptosystems. First, we compute transformed minutiae features using multiple spiral curves. Further, these transformed features are encrypted using fuzzy commitment scheme. Hence, a secure template is obtained. Experimental results and analysis prove the credibility of proposed method with recently presented methods of fingerprint template protection.

[1]  Miguel Angel Murillo-Escobar,et al.  A robust embedded biometric authentication system based on fingerprint and chaotic encryption , 2015, Expert Syst. Appl..

[2]  Sanaa Ghouzali,et al.  Fingerprint shell: Secure representation of fingerprint template , 2014, Pattern Recognit. Lett..

[3]  Andrew Beng Jin Teoh,et al.  Kernel PCA enabled bit-string representation for minutiae-based cancellable fingerprint template , 2016, Pattern Recognit..

[4]  Anil K. Jain,et al.  A hybrid biometric cryptosystem for securing fingerprint minutiae templates , 2010, Pattern Recognit. Lett..

[5]  Eryun Liu,et al.  Minutiae and modified Biocode fusion for fingerprint-based key generation , 2010, J. Netw. Comput. Appl..

[6]  Zhe Jin,et al.  Fingerprint template protection with minutiae-based bit-string for security and privacy preserving , 2012, Expert Syst. Appl..

[7]  Anil K. Jain,et al.  Attacks on biometric systems: a case study in fingerprints , 2004, IS&T/SPIE Electronic Imaging.

[8]  Nalini K. Ratha,et al.  Enhancing security and privacy in biometrics-based authentication systems , 2001, IBM Syst. J..

[9]  Kannan Karthik,et al.  A robust alignment-free fingerprint hashing algorithm based on minimum distance graphs , 2012, Pattern Recognit..

[10]  Munaga V. N. K. Prasad,et al.  Generating cancellable fingerprint templates based on Delaunay triangle feature set construction , 2016, IET Biom..

[11]  Chulhan Lee,et al.  Cancelable fingerprint templates using minutiae-based bit-strings , 2010, J. Netw. Comput. Appl..

[12]  Xingzhao Liu,et al.  Nonlinear Frequency Scaling Algorithm for High Squint Spotlight SAR Data Processing , 2008, EURASIP J. Adv. Signal Process..

[13]  Zhe Jin,et al.  Biometric cryptosystems: A new biometric key binding and its implementation for fingerprint minutiae-based representation , 2016, Pattern Recognit..

[14]  Jiankun Hu,et al.  Pair-polar coordinate-based cancelable fingerprint templates , 2011, Pattern Recognit..

[15]  Jiankun Hu,et al.  Cancelable Fingerprint Templates with Delaunay Triangle-Based Local Structures , 2013, CSS.

[16]  Peng Li,et al.  An effective biometric cryptosystem combining fingerprints with error correction codes , 2012, Expert Syst. Appl..

[17]  Jiankun Hu,et al.  Alignment-free cancelable fingerprint template design: A densely infinite-to-one mapping (DITOM) approach , 2012, Pattern Recognit..

[18]  Ajay Kumar,et al.  A Cell-Array-Based Multibiometric Cryptosystem , 2016, IEEE Access.

[19]  Jiankun Hu,et al.  A blind system identification approach to cancelable fingerprint templates , 2016, Pattern Recognit..

[20]  Farid Benhammadi,et al.  Password hardened fuzzy vault for fingerprint authentication system , 2014, Image Vis. Comput..

[21]  Jiankun Hu,et al.  An alignment-free fingerprint bio-cryptosystem based on modified Voronoi neighbor structures , 2014, Pattern Recognit..