Machine Learning Spatial Geometry from Entanglement Features

Machine learning is a fast developing area that finds applications in all disciplines of science. Here, the authors demonstrate that the machine learning (in particular deep learning) technique can be applied to understand the emergence of spatial geometry from learning the features of quantum many-body entanglement, an idea that was proposed in a recent study of the holography duality in quantum gravity. This work is the first to successfully demonstrate the idea of ``geometry emerging from learning''.

[1]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[2]  G. Evenbly,et al.  Algorithms for entanglement renormalization , 2007, 0707.1454.

[3]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[4]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[5]  M. Fisher Statistical Mechanics of Dimers on a Plane Lattice , 1961 .

[6]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[7]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[8]  Max Tegmark,et al.  Why Does Deep and Cheap Learning Work So Well? , 2016, Journal of Statistical Physics.

[9]  Yingfei Gu,et al.  Holographic entanglement renormalization of topological insulators , 2015, 1605.07199.

[10]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[11]  Marc Henneaux,et al.  Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity , 1986 .

[12]  Yingfei Gu,et al.  Holographic duality between $(2+1)$-dimensional quantum anomalous Hall state and $(3+1)$-dimensional topological insulators , 2016, 1605.00570.

[13]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[14]  Shilin Huang,et al.  Discrete gravity on random tensor network and holographic Rényi entropy , 2017, 1705.01964.

[15]  Alex May Tensor networks for dynamic spacetimes , 2016 .

[16]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[17]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[18]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[19]  G. Evenbly,et al.  Tensor Network Renormalization Yields the Multiscale Entanglement Renormalization Ansatz. , 2015, Physical review letters.

[20]  H. Tasaki From Quantum Dynamics to the Canonical Distribution: General Picture and a Rigorous Example , 1997, cond-mat/9707253.

[21]  Vijay Balasubramanian,et al.  Holographic interpretations of the renormalization group , 2012, 1211.1729.

[22]  Werner Israel,et al.  Event horizons in static electrovac space-times , 1968 .

[23]  Deutsch,et al.  Quantum statistical mechanics in a closed system. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[24]  Xi Dong The gravity dual of Rényi entropy , 2016, Nature Communications.

[25]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[26]  G. Evenbly,et al.  Tensor Network Renormalization. , 2014, Physical review letters.

[27]  Tadashi Takayanagi,et al.  Boundary states as holographic duals of trivial spacetimes , 2014, 1412.6226.

[28]  T. Takayanagi,et al.  A covariant holographic entanglement entropy proposal , 2007, 0705.0016.

[29]  Masahiro Nozaki,et al.  Holographic geometry of entanglement renormalization in quantum field theories , 2012, 1208.3469.

[30]  Kanno,et al.  Proof of Page's conjecture on the average entropy of a subsystem. , 1994, Physical review letters.

[31]  Wen-Cong Gan,et al.  Holography as deep learning , 2017, 1705.05750.

[32]  Florent Krzakala,et al.  Approximate message passing with restricted Boltzmann machine priors , 2015, ArXiv.

[33]  Giancarlo Fissore,et al.  Spectral dynamics of learning in restricted Boltzmann machines , 2017 .

[34]  Yi-Zhuang You,et al.  Holographic coherent states from random tensor networks , 2017 .

[35]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[36]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[37]  Werner Israel,et al.  Event Horizons in Static Vacuum Space-Times , 1967 .

[38]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[39]  I. Peschel LETTER TO THE EDITOR: Calculation of reduced density matrices from correlation functions , 2002, cond-mat/0212631.

[40]  Aitor Lewkowycz,et al.  Quantum corrections to holographic entanglement entropy , 2013, 1307.2892.

[41]  Srednicki Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[43]  Xiao-Liang Qi,et al.  Exact holographic mapping in free fermion systems , 2015, 1503.08592.

[44]  Zhao Yang,et al.  Bidirectional holographic codes and sub-AdS locality , 2015, 1510.03784.

[45]  B. Zeng,et al.  Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator , 2016, 1609.01246.

[46]  Li Huang,et al.  Accelerated Monte Carlo simulations with restricted Boltzmann machines , 2016, 1610.02746.

[47]  Edward Witten Anti-de Sitter Space, Thermal Phase Transition, And Confinement in Gauge Theories , 1998 .

[48]  Tadashi Takayanagi,et al.  Holographic geometry of cMERA for quantum quenches and finite temperature , 2013, 1311.6095.

[49]  M. Kac,et al.  A combinatorial solution of the two-dimensional Ising model , 1952 .

[50]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[51]  Guanyu Zhu,et al.  Measurement Protocol for the Entanglement Spectrum of Cold Atoms , 2016, 1605.08624.

[52]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[53]  Bela Bauer,et al.  Extracting Entanglement Geometry from Quantum States. , 2017, Physical review letters.

[54]  Sen Average Entropy of a Quantum Subsystem. , 1996, Physical review letters.

[55]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[56]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[57]  K. Aoki,et al.  Restricted Boltzmann machines for the long range Ising models , 2016, 1701.00246.

[58]  Sung-Sik Lee,et al.  Quantum renormalization group and holography , 2013, 1305.3908.

[59]  I. Peschel,et al.  Reduced density matrices and entanglement entropy in free lattice models , 2009, 0906.1663.

[60]  M. L. Wall,et al.  Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet , 2016, Nature Physics.

[61]  Xi Dong,et al.  Holographic entanglement entropy for general higher derivative gravity , 2013, 1310.5713.

[62]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[63]  Yi-Zhuang You,et al.  Entanglement Holographic Mapping of Many-Body Localized System by Spectrum Bifurcation Renormalization Group , 2016 .

[64]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[65]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[66]  Roger G. Melko,et al.  Learning Thermodynamics with Boltzmann Machines , 2016, ArXiv.

[67]  Brandon Carter,et al.  Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .

[68]  Dong-Ling Deng,et al.  Machine Learning Topological States , 2016, 1609.09060.

[69]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[70]  F. Verstraete,et al.  Entanglement renormalization for quantum fields in real space. , 2011, Physical review letters.

[71]  Erik Schnetter,et al.  Ab initio holography , 2015, 1503.06474.

[72]  D. Marolf,et al.  Living on the edge: a toy model for holographic reconstruction of algebras with centers , 2016, 1611.05841.

[73]  J. Molina-Vilaplana,et al.  Information geometry of entanglement renormalization for free quantum fields , 2015, 1503.07699.

[74]  Xi Dong,et al.  Bulk locality and quantum error correction in AdS/CFT , 2014, 1411.7041.

[75]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[76]  J. de Boer,et al.  On the holographic renormalization group , 1999 .