ANALYSIS OF A TWO-SCALE CAHN-HILLIARD MODEL FOR IMAGE INPAINTING

Image inpainting is the process of filling in missing parts of damaged images based on information gleaned from surrounding areas. We consider a model for inpainting binary images using a modified Cahn-Hilliard equation. We prove for the steady state problem that the isophote directions are matched at the boundary of inpainting regions. Our model has two scales, the diffuse interface scale, ε, on which it can accomplish topological transitions, and the feature scale of the image. We show via simulations that a dynamic two step method involving the diffuse interface scale allows us to connect regions across larger inpainting domains. For the model problem of stripe inpainting, we show that this issue is related to a bifurcation structure with respect to the scale ε.

[1]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[2]  Stefano Finzi Vita,et al.  Area-preserving curve-shortening flows: from phase separation to image processing , 2002 .

[3]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[4]  Gilberte Émile-Mâle The restorer's handbook of easel painting , 1976 .

[5]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[6]  Riccardo March,et al.  A variational method for the recovery of smooth boundaries , 1997, Image Vis. Comput..

[7]  John W. Cahn,et al.  Linking anisotropic sharp and diffuse surface motion laws via gradient flows , 1994 .

[8]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Aggelos K. Katsaggelos,et al.  Spline-based boundary loss concealment , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[10]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[11]  Anil C. Kokaram,et al.  Motion picture restoration - digital algorithms for artefact suppression in degraded motion picture film and video , 2001 .

[12]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[13]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[14]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[16]  L. Segel,et al.  Nonlinear aspects of the Cahn-Hilliard equation , 1984 .

[17]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[18]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  Peter W. Bates,et al.  The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..

[20]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[21]  Fernando Pereira,et al.  Spatial shape error concealment for object-based image and video coding , 2004, IEEE Transactions on Image Processing.

[22]  Simon Masnou Filtrage et désocclusion d'images par méthodes d'ensembles de niveau , 1998 .

[23]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[24]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .