ANALYSIS OF A TWO-SCALE CAHN-HILLIARD MODEL FOR IMAGE INPAINTING
暂无分享,去创建一个
[1] B. Kendall. Nonlinear Dynamics and Chaos , 2001 .
[2] Stefano Finzi Vita,et al. Area-preserving curve-shortening flows: from phase separation to image processing , 2002 .
[3] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[4] Gilberte Émile-Mâle. The restorer's handbook of easel painting , 1976 .
[5] Tony F. Chan,et al. Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..
[6] Riccardo March,et al. A variational method for the recovery of smooth boundaries , 1997, Image Vis. Comput..
[7] John W. Cahn,et al. Linking anisotropic sharp and diffuse surface motion laws via gradient flows , 1994 .
[8] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[9] Aggelos K. Katsaggelos,et al. Spline-based boundary loss concealment , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).
[10] Jean-Michel Morel,et al. Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).
[11] Anil C. Kokaram,et al. Motion picture restoration - digital algorithms for artefact suppression in degraded motion picture film and video , 2001 .
[12] Guillermo Sapiro,et al. Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[13] Guillermo Sapiro,et al. Image inpainting , 2000, SIGGRAPH.
[14] B. Vollmayr-Lee,et al. Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] Peter W. Bates,et al. Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .
[16] L. Segel,et al. Nonlinear aspects of the Cahn-Hilliard equation , 1984 .
[17] Andrea L. Bertozzi,et al. Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.
[18] Robert L. Pego,et al. Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[19] Peter W. Bates,et al. The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..
[20] Jianhong Shen,et al. Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.
[21] Fernando Pereira,et al. Spatial shape error concealment for object-based image and video coding , 2004, IEEE Transactions on Image Processing.
[22] Simon Masnou. Filtrage et désocclusion d'images par méthodes d'ensembles de niveau , 1998 .
[23] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[24] D. J. Eyre,et al. An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .