An Improved Regularity Criterion and Absence of Splash-like Singularities for g-SQG Patches
暂无分享,去创建一个
[1] Alexander Kiselev,et al. On Nonexistence of Splash Singularities for the $$\alpha $$ α -SQG Patches , 2021, J. Nonlinear Sci..
[2] Neel Patel,et al. Well-Posedness for SQG Sharp Fronts with Unbounded Curvature , 2021, Mathematical Models and Methods in Applied Sciences.
[3] F. Gancedo,et al. On the local existence and blow-up for generalized SQG patches , 2018, Annals of PDE.
[4] L. Ryzhik,et al. Finite time singularity for the modified SQG patch equation , 2016 .
[5] Antonio C'ordoba,et al. Uniqueness for SQG patch solutions , 2016, 1605.06663.
[6] A. Kiselev,et al. Local Regularity for the Modified SQG Patch Equation , 2015, 1508.07611.
[7] Thomas Y. Hou,et al. Toward the Finite-Time Blowup of the 3D Axisymmetric Euler Equations: A Numerical Investigation , 2014, Multiscale Model. Simul..
[8] A. Kiselev,et al. Small scale creation for solutions of the incompressible two dimensional Euler equation , 2013, 1310.4799.
[9] T. Hou,et al. Potentially singular solutions of the 3D axisymmetric Euler equations , 2013, Proceedings of the National Academy of Sciences.
[10] S. Shkoller,et al. On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations , 2012, 1201.4919.
[11] C. Fefferman,et al. Finite time singularities for the free boundary incompressible Euler equations , 2011, 1112.2170.
[12] P. Constantin,et al. Generalized surface quasi‐geostrophic equations with singular velocities , 2011, 1101.3537.
[13] L. Debnath. Geophysical Fluid Dynamics , 2008 .
[14] Peter Constantin,et al. Global regularity for a modified critical dissipative quasi-geostrophic equation , 2008, 0803.1318.
[15] F. Gancedo. Existence for the α-patch model and the QG sharp front in Sobolev spaces , 2007, math/0701447.
[16] Jose L. Rodrigo,et al. On the evolution of sharp fronts for the quasi‐geostrophic equation , 2005 .
[17] M. Fontelos,et al. Evidence of singularities for a family of contour dynamics equations , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[18] J. Escher,et al. Wave breaking for nonlinear nonlocal shallow water equations , 1998 .
[19] Andrew J. Majda,et al. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .
[20] K. Swanson,et al. Spectra of local and nonlocal two-dimensional turbulence , 1994 .
[21] W. Wolibner. Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long , 1933 .
[22] E. Hölder. Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit , 1933 .
[23] K. S. S M I T H,et al. Turbulent diffusion in the geostrophic inverse cascade , 2002 .
[24] J. Chemin,et al. Persistance de structures géométriques dans les fluides incompressibles bidimensionnels , 1993 .