Fast sparse reconstruction: Greedy inverse scale space flows

[1]  Michael Möller,et al.  Multiscale Methods for Polyhedral Regularizations , 2013, SIAM J. Optim..

[2]  Simon Foucart,et al.  Stability and Robustness of Weak Orthogonal Matching Pursuits , 2012 .

[3]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[4]  Cishen Zhang,et al.  Orthonormal Expansion $\ell_{1}$-Minimization Algorithms for Compressed Sensing , 2011, IEEE Transactions on Signal Processing.

[5]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[7]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[8]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[9]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[10]  Jian-Feng Cai,et al.  Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..

[11]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[12]  Michael Möller,et al.  An adaptive inverse scale space method for compressed sensing , 2012, Math. Comput..

[13]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[14]  Jian-Feng Cai,et al.  Convergence of the linearized Bregman iteration for ℓ1-norm minimization , 2009, Math. Comput..

[15]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[16]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[17]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[18]  Michael Möller,et al.  A dual split Bregman method for fast ℓ1 minimization , 2013, Math. Comput..

[19]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[20]  Bin Dong,et al.  Fast Linearized Bregman Iteration for Compressive Sensing and Sparse Denoising , 2011, ArXiv.

[21]  S. Osher,et al.  Nonlinear inverse scale space methods , 2006 .

[22]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[23]  Ivan W. Selesnick,et al.  A Subband Adaptive Iterative Shrinkage/Thresholding Algorithm , 2010, IEEE Transactions on Signal Processing.

[24]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[25]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[26]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[27]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.