The persistence of phase-separation in LiFePO4 with two-dimensional Li+ transport : the Cahn-Hilliard-reaction equation and the role of defects

We examine the solution of the two-dimensional Cahn-Hilliard-reaction (CHR) equation in the xy plane as a model of Li+ intercalation into LiFePO4 material. We validate our numerical solution against the solution of the depth-averaged equation, which has been used to model intercalation in the limit of highly orthotropic diffusivity and gradient penalty tensors. We then examine the phase-change behaviour in the full CHR system as these parameters become more isotropic, and find that as the Li+ diffusivity is increased in the x direction, phase separation persists at high currents, even in small crystals with averaged coherency strain included. The resulting voltage curves decrease monotonically, which has previously been considered a hallmark of crystals that fill homogeneously.

[1]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[2]  Stefan Adams,et al.  Lithium ion pathways in LiFePO4 and related olivines , 2010 .

[3]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[4]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[5]  Krishna Garikipati,et al.  The Role of Coherency Strains on Phase Stability in LixFePO4: Needle Crystallites Minimize Coherency Strain and Overpotential , 2009 .

[6]  Martin Z. Bazant,et al.  Phase-Transformation Wave Dynamics in LiFePO4 , 2008 .

[7]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[8]  Pedro E. Arce,et al.  Discharge Model for LiFePO4 Accounting for the Solid Solution Range , 2008 .

[9]  Damian Burch,et al.  Intercalation dynamics in lithium-ion batteries , 2009 .

[10]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[11]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[12]  Steve W. Martin,et al.  Lithium ion conductivity in single crystal LiFePO4 , 2008 .

[13]  Palani Balaya,et al.  Anisotropy of Electronic and Ionic Transport in LiFePO4 Single Crystals , 2007 .

[14]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[15]  Palani Balaya,et al.  Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique , 2008 .

[16]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[17]  M. H. Everdell Introduction to Chemical Thermodynamics , 1965 .

[18]  M. Bazant Phase-Field Theory of Ion Intercalation Kinetics , 2012 .

[19]  E. Bruce Nauman,et al.  Nonlinear diffusion and phase separation , 2001 .

[20]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[21]  Ming Tang,et al.  Model for the Particle Size, Overpotential, and Strain Dependence of Phase Transition Pathways in Storage Electrodes: Application to Nanoscale Olivines , 2009 .

[22]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[23]  C. Please,et al.  Primary Alkaline Battery Cathodes A Three‐Scale Model , 2000 .

[24]  J. Tse,et al.  Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study. , 2011, The journal of physical chemistry. A.

[25]  J. Cahn Coherent fluctuations and nucleation in isotropic solids , 1962 .

[26]  G. Ceder,et al.  Elastic properties of olivine LixFePO4 from first principles , 2006 .

[27]  Phase field theory of heterogeneous crystal nucleation. , 2006, Physical review letters.

[28]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[29]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[30]  Y. Chiang,et al.  Modeling the competing phase transition pathways in nanoscale olivine electrodes , 2010 .

[31]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[32]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[33]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[34]  Craig A. J. Fisher,et al.  Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior , 2008 .

[35]  G. Seifert,et al.  Atomistic investigation of Li+ diffusion pathways in the olivine LiFePO4 cathode material , 2011 .

[36]  Hsiao-Ying Shadow Huang,et al.  Strain Accommodation during Phase Transformations in Olivine‐Based Cathodes as a Materials Selection Criterion for High‐Power Rechargeable Batteries , 2007 .

[37]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[38]  Milo R. Dorr,et al.  Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles , 2011 .

[39]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[40]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[41]  Si-Young Choi,et al.  Orientation-dependent arrangement of antisite defects in lithium iron(II) phosphate crystals. , 2009, Angewandte Chemie.