Graphene-based liquid crystal device.

Graphene is only one atom thick, optically transparent, chemically inert, and an excellent conductor. These properties seem to make this material an excellent candidate for applications in various photonic devices that require conducting but transparent thin films. In this letter, we demonstrate liquid crystal devices with electrodes made of graphene that show excellent performance with a high contrast ratio. We also discuss the advantages of graphene compared to conventionally used metal oxides in terms of low resistivity, high transparency and chemical stability.

[1]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[2]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[3]  Klaus Kern,et al.  Electronic transport properties of individual chemically reduced graphene oxide sheets. , 2007, Nano letters.

[4]  C. Granqvist Transparent conductors as solar energy materials: A panoramic review , 2007 .

[5]  K. Novoselov,et al.  Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.

[6]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[7]  Vladimir I. Fal'ko,et al.  Visibility of graphene flakes on a dielectric substrate , 2007, 0705.0091.

[8]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[9]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[10]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[11]  F. Roussel,et al.  Transparent carbon nanotube-based driving electrodes for liquid crystal dispersion display devices , 2006 .

[12]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[13]  Garry Rumbles,et al.  Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode , 2006 .

[14]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Shui-Tong Lee,et al.  Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate , 2004 .

[16]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[17]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[18]  T. Klapwijk,et al.  Indium contamination from the indium–tin–oxide electrode in polymer light‐emitting diodes , 1996 .

[19]  J. C. Scott,et al.  Degradation and failure of MEH‐PPV light‐emitting diodes , 1996 .

[20]  W. F. Peck,et al.  Transparent conducting thin films of GaInO3 , 1994 .

[21]  Richard A. Soref,et al.  Field effects in nematic liquid crystals obtained with interdigital electrodes , 1974 .

[22]  M. Schiekel,et al.  Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields , 1971 .

[23]  M. Schadt,et al.  Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal , 1971 .

[24]  N. F. Mott,et al.  Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands , 1969 .