Visualization for a Multi-Sensor Data Analysis

This paper describes our efforts in creating the software in order to analyze the multi-sensor data for gas transmission pipeline inspection. The amount of data is usually considerable because the hardware system that consists of multiple heterogeneous sensors records multi-sensor values for long-distance inspection. It imposes a heavy burden on the operators who should sieve the huge and complex data, detect features of the pipeline and decide a feature as a significant defect. In our system, the virtual 3D pipeline helps the user to examine the inside of pipeline intuitively by navigating according to the realistic pipeline trajectory. We mapped the geographical data of the pipeline and heterogeneous sensor data on the virtual 3D pipeline. Moreover, our system offer the various feature detail views to help the users rapid and precise decision. Users can switch the navigation mode and the feature detail mode easily. Consequently, the virtual pipeline plays a role as an intuitive interaction metaphor for pipeline inspection

[1]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[2]  Pak Chung Wong,et al.  Multivariate visualization using metric scaling , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[3]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[4]  Lucy T. Nowell,et al.  ThemeRiver: Visualizing Thematic Changes in Large Document Collections , 2002, IEEE Trans. Vis. Comput. Graph..

[5]  Marie-Christine Fauvet,et al.  Visualization Process of Temporal Data , 2004, DEXA.

[6]  Jean-Daniel Fekete,et al.  Interactive information visualization of a million items , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[7]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[8]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[9]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[10]  Ian Witten,et al.  Data Mining , 2000 .

[11]  H. Hauser,et al.  Interactive focus+context visualization with linked 2D/3D scatterplots , 2004, Proceedings. Second International Conference on Coordinated and Multiple Views in Exploratory Visualization, 2004..

[12]  Lloyd Treinish,et al.  An extended data-flow architecture for data analysis and visualization , 1995, COMG.

[13]  Pak Chung Wong,et al.  Multivariate visualization using metric scaling , 1997 .

[14]  Gwan Soo Park,et al.  Development of the caliper system for a geometry pig based on magnetic field analysis , 2003 .

[15]  Jean-Daniel Fekete,et al.  Interactive Information Visualization to the Million , 2002 .

[16]  John T. Behrens,et al.  Applications of multivariate visualization to behavioral sciences , 1995 .

[17]  Lloyd A. Treinish An interactive, discipline‐independent data visualization system , 1989 .

[18]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[19]  John Maindonald,et al.  Data Analysis and Graphics Using R: Contents , 2006 .

[20]  David H. Laidlaw,et al.  The application visualization system: a computational environment for scientific visualization , 1989, IEEE Computer Graphics and Applications.

[21]  Paul E. Haeberli,et al.  ConMan: a visual programming language for interactive graphics , 1988, SIGGRAPH.

[22]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.