A Biochemical Mechanism for Nonrandom Mutations and Evolution

As this minireview is concerned with the importance of the environment in directing evolution, it is appropriate to remember that Lamarck was the first to clearly articulate a consistent theory of gradual evolution from the simplest of species to the most complex, culminating in the origin of

[1]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[2]  W. Stemmer Rapid evolution of a protein in vitro by DNA shuffling , 1994, Nature.

[3]  D. A. Clayton,et al.  Template-directed pausing in in vitro DNA synthesis by DNA polymerase a from Drosophila melanogaster embryos. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. Fitch,et al.  Dynamics of IS-related genetic rearrangements in resting Escherichia coli K-12. , 1995, Molecular biology and evolution.

[5]  E. Mayr The Growth of Biological Thought: Diversity, Evolution, and Inheritance , 1983 .

[6]  B. Maden,et al.  No soup for starters? Autotrophy and the origins of metabolism. , 1995, Trends in biochemical sciences.

[7]  R. Schaaper,et al.  Mechanisms of spontaneous mutagenesis: an analysis of the spectrum of spontaneous mutation in the Escherichia coli lacI gene. , 1986, Journal of molecular biology.

[8]  S. Mirkin,et al.  Formation of (dA-dT)n cruciforms in Escherichia coli cells under different environmental conditions , 1991, Journal of bacteriology.

[9]  L. C. Dunn GENETICS IN THE 20th CENTURY , 1952 .

[10]  P. Hanawalt,et al.  Stranded in an active gene , 1993, Current Biology.

[11]  R. Mortlock Microorganisms as Model Systems for Studying Evolution , 1984, Monographs in Evolutionary Biology.

[12]  R. Hengge-aronis,et al.  The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. , 1994, Genes & development.

[13]  É. Massé,et al.  DNA Topoisomerases Regulate R-loop Formation during Transcription of the rrnB Operon in Escherichia coli * , 1997, The Journal of Biological Chemistry.

[14]  B. Ames,et al.  Guanosine 5'-diphosphate 3'-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Jinks-Robertson,et al.  Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae. , 2000, Genetics.

[16]  P. Rigby,et al.  Gene duplication in experimental enzyme evolution , 1974, Nature.

[17]  T. Kunkel Mutational specificity of depurination. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[18]  B. D. Davis,et al.  Transcriptional bias: a non-Lamarckian mechanism for substrate-induced mutations. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Lewin Origin of Species in Stressed Environments: Data from marine and terrestrial communities unexpectedly reveal the preferential origin of evolutionary novelties in species-poor environments. , 1983, Science.

[20]  T. Dobzhansky The genetic basis of evolution. , 1950, Scientific American.

[21]  M. Gross,et al.  Incidence of mutator strains in Escherichia coli and coliforms in nature. , 1981, Mutation research.

[22]  N. Fujita,et al.  The mediator for stringent control, ppGpp, binds to the β‐subunit of Escherichia coli RNA polymerase , 1998, Genes to cells : devoted to molecular & cellular mechanisms.

[23]  B. Mcclintock The origin and behavior of mutable loci in maize , 1950, Proceedings of the National Academy of Sciences.

[24]  Philip J. Farabaugh,et al.  Molecular basis of base substitution hotspots in Escherichia coli , 1978, Nature.

[25]  A. Bhagwat,et al.  Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Cashel,et al.  Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp , 1993, Journal of bacteriology.

[27]  B. Glickman,et al.  Unique self-complementarity of palindromic sequences provides DNA structural intermediates for mutation. , 1983, Cold Spring Harbor symposia on quantitative biology.

[28]  Samuel H. Wilson,et al.  Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. , 1993, The Journal of biological chemistry.

[29]  R. Rudner,et al.  Is There a Link between Mutation Rates and the Stringent Response in Bacillus subtilis? a , 1999, Annals of the New York Academy of Sciences.

[30]  A. Oparin [The origin of life]. , 1938, Nordisk medicin.

[31]  R. Wells,et al.  Direct evidence for the effect of transcription on local DNA supercoiling in vivo. , 1992, Journal of molecular biology.

[32]  B. Michel,et al.  DNA transcription and repressor binding affect deletion formation in Escherichia coli plasmids. , 1992, The EMBO journal.

[33]  É. Massé,et al.  Relaxation of Transcription-induced Negative Supercoiling Is an Essential Function of Escherichia coli DNA Topoisomerase I* , 1999, The Journal of Biological Chemistry.

[34]  R. Wells,et al.  Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo. , 1991, The Journal of biological chemistry.

[35]  R. Sinden,et al.  Primer-template misalignments during leading strand DNA synthesis account for the most frequent spontaneous mutations in a quasipalindromic region in Escherichia coli. , 1998, Journal of molecular biology.

[36]  P. V. von Hippel,et al.  Dynamic aspects of native DNA structure: kinetics of the formaldehyde reaction with calf thymus DNA. , 1971, Journal of molecular biology.

[37]  F. Rothman,et al.  MUTANTS OF ESCHERICHIA COLI CONSTITUTIVE FOR ALKALINE PHOSPHATASE , 1961, Journal of Bacteriology.

[38]  A. Matin,et al.  The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli , 1991, Journal of bacteriology.

[39]  N H Horowitz,et al.  On the Evolution of Biochemical Syntheses. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Lewontin,et al.  Regulation of Gene Transcription , 1999 .

[41]  A. Bruhat,et al.  Amino acid limitation regulates gene expression , 1999, Proceedings of the Nutrition Society.

[42]  P. Primakoff,et al.  Positive control of lac operon expression in vitro by guanosine 5'-diphosphate 3'-diphosphate. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Walker SOS-regulated proteins in translesion DNA synthesis and mutagenesis. , 1995, Trends in biochemical sciences.

[44]  A. Podtelezhnikov,et al.  Large-scale effects of transcriptional DNA supercoiling in vivo. , 1999, Journal of molecular biology.

[45]  S. Silver,et al.  Phosphate in Microorganisms: Cellular and Molecular Biology , 1994 .

[46]  B E Wright,et al.  The effect of the stringent response on mutation rates in Escherichia coli K‐12 , 1996, Molecular microbiology.

[47]  Weismann Ueber die Vererbung , 1890 .

[48]  S. Benzer,et al.  ON THE TOPOGRAPHY OF THE GENETIC FINE STRUCTURE. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Forsdyke Conservation of Stem-Loop Potential in Introns of Snake Venom Phospholipase A2 Genes: An Application of FORS-D Analysis , 1995 .

[50]  M. Demerec,et al.  Genetic studies with bacteria. , 1956 .

[51]  Nikos Panayotatos,et al.  Cruciform structures in supercoiled DNA , 1981, Nature.

[52]  G. Wächtershäuser,et al.  Evolution of the first metabolic cycles. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Cairns,et al.  Adaptive reversion of a frameshift mutation in Escherichia coli. , 1991, Genetics.

[54]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[55]  F. Taddei,et al.  Role of mutator alleles in adaptive evolution , 1997, Nature.

[56]  A. Hinnebusch Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. , 1988, Microbiological reviews.

[57]  B. Wright,et al.  Reversion rates in a leuB auxotroph of Escherichia coli K-12 correlate with ppGpp levels during exponential growth. , 1997, Microbiology.

[58]  M. Cashel,et al.  The stringent response , 1996 .

[59]  M. Buettner,et al.  Cyclic Adenosine 3′,5′-Monophosphate in Escherichia coli , 1973, Journal of bacteriology.

[60]  J R Roth,et al.  Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. , 1989, Genetics.

[61]  H. M. Sobell Molecular mechanism for genetic recombination. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[62]  B. Wright,et al.  Hypermutation in derepressed operons of Escherichia coli K12. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  E. Lin,et al.  Evolution of a Catabolic Pathway in Bacteria , 1964, Science.

[64]  R. Levins Theory of fitness in a heterogeneous environment. VI. The adaptive significance of mutation. , 1967, Genetics.

[65]  E. Lin,et al.  A method for isolating constitutive mutants for carbohydrate-catabolizing enzymes. , 1962, Biochimica et biophysica acta.

[66]  T. Kunkel,et al.  A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. , 1990, Biochemistry.

[67]  The Crust of the Earth , 1950 .

[68]  T. Dobzhansky Heredity, environment, and evolution. , 1950, Science.

[69]  S. Wessler,et al.  Control of leu operon expression in Escherichia coli by a transcription attenuation mechanism. , 1981, Journal of molecular biology.

[70]  B. Wright,et al.  Specificity of Transcription‐Enhanced Mutations , 1999, Annals of the New York Academy of Sciences.

[71]  E. Lin,et al.  Mutants of Aerobacter aerogenes Capable of Utilizing Xylitol as a Novel Carbon , 1968, Journal of bacteriology.

[72]  B. rd Differential mutation of the beta-galactosidase gene of Escherichia coli. , 1971 .

[73]  É. Massé,et al.  Escherichia coli DNA Topoisomerase I Inhibits R-loop Formation by Relaxing Transcription-induced Negative Supercoiling* , 1999, The Journal of Biological Chemistry.

[74]  A. Datta,et al.  Association of increased spontaneous mutation rates with high levels of transcription in yeast. , 1995, Science.

[75]  D M Prescott,et al.  The unusual organization and processing of genomic DNA in hypotrichous ciliates. , 1992, Trends in genetics : TIG.

[76]  D. Lilley,et al.  The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. Calvo,et al.  Relationship Between Messenger Ribonucleic Acid and Enzyme Levels Specified by the Leucine Operon of Escherichia coli K-12 , 1977, Journal of bacteriology.

[78]  E. Lewis Pseudoallelism and gene evolution. , 1951, Cold Spring Harbor symposia on quantitative biology.

[79]  K. Drlica,et al.  DNA supercoiling and prokaryotic transcription , 1989, Cell.

[80]  S. Mirkin,et al.  Transcriptionally driven cruciform formation in vivo. , 1992, Nucleic acids research.

[81]  B. Olivera,et al.  E.E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. , 1997, Molecular biology of the cell.

[82]  R. K. Herman,et al.  Effect of Gene Induction on the Rate of Mutagenesis by ICR-191 in Escherichia coli , 1971, Journal of bacteriology.

[83]  J. Calvo,et al.  Mutations that convert the four leucine codons of the Salmonella typhimurium leu leader to four threonine codons , 1985, Journal of bacteriology.

[84]  B W Glickman,et al.  Mutational specificity of UV light in Escherichia coli: indications for a role of DNA secondary structure. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[85]  W. L. Payne,et al.  High Mutation Frequencies Among Escherichia coli and Salmonella Pathogens , 1996, Science.

[86]  T. Kunkel,et al.  The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. , 1990, The Journal of biological chemistry.

[87]  T. Kunkel,et al.  Cytosine deamination in mismatched base pairs. , 1993, Biochemistry.

[88]  J. Gallant,et al.  On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. , 1971, The Journal of biological chemistry.

[89]  K. Kim ISOLATION AND PROPERTIES OF A PUTRESCINE-DEGRADING MUTANT OF ESCHERICHIA COLI , 1963, Journal of bacteriology.

[90]  B Nyberg,et al.  Heat-induced deamination of cytosine residues in deoxyribonucleic acid. , 1974, Biochemistry.

[91]  J. Drake A constant rate of spontaneous mutation in DNA-based microbes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[92]  C. Papanicolaou,et al.  An in vitro approach to identifying specificity determinants of mutagenesis mediated by DNA misalignments. , 1991, Journal of molecular biology.

[93]  J H Miller,et al.  Genetic studies of the lac repressor. I. Correlation of mutational sites with specific amino acid residues: construction of a colinear gene-protein map. , 1977, Journal of molecular biology.

[94]  P. Primakoff In vivo role of the relA+ gene in regulation of the lac operon , 1981, Journal of bacteriology.

[95]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[96]  E. Selker Premeiotic instability of repeated sequences in Neurospora crassa. , 1990, Annual review of genetics.

[97]  J. Miller,et al.  Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. , 1978, Journal of molecular biology.

[98]  C. K. Lee,et al.  Gene expression profile of aging and its retardation by caloric restriction. , 1999, Science.

[99]  W. H. Mager,et al.  Stress-induced transcriptional activation. , 1995, Microbiological reviews.

[100]  R. J. Franco,et al.  Rifampin and rpoB mutations can alter DNA supercoiling in Escherichia coli , 1988, Journal of bacteriology.

[101]  L. Bossi,et al.  Transcription induces gyration of the DNA template in Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[102]  B. Glickman,et al.  Sites of preferential induction of cyclobutane pyrimidine dimers in the nontranscribed strand of lacI correspond with sites of UV-induced mutation in Escherichia coli. , 1991, The Journal of biological chemistry.

[103]  C. A. Thomas,et al.  Local destabilization of DNA during transcription. , 1972, Journal of molecular biology.