An improved block equalization scheme for uncertain channel estimation

We consider the design of a block equalizer for an intersymbol interference channel, given that the channel impulse response is not perfectly known at the receiver. In contrast to other schemes, our receiver is designed for imperfect channel state information and incorporates the statistics of the channel estimation error. In particular, we suggest an error model for data transmission that takes the influence from the data symbols on the estimation noise into account. We derive the optimum detection rule for the considered error model according to the maximum likelihood criterion and verify that the covariance matrix of the estimation noise depends on the actual transmitted data symbols. Motivated by this result, we propose a realizable receiver structure adopting the turbo principle that exploits the data-dependency of the covariance matrix of the estimation noise. The proposed scheme outperforms conventional receivers that neglect the exact statistics of the estimation noise. The core of our receiver is a soft-input soft-output block equalizer based on constrained minimum variance filter design. We assess the performance of the proposed turbo equalization scheme for block Rayleigh fading channels, applying both one-shot training-based channel estimation and iterative data-aided channel estimation

[1]  J. D. Parsons,et al.  The Mobile Radio Propagation Channel , 1991 .

[2]  Michael Tüchler,et al.  EXIT CHART ANALYSIS APPLIED TO ADAPTIVE TURBO EQUALIZATION , 2002 .

[3]  Jurgen Lindner,et al.  Block transmission equalizers using constrained minimum variance filters with application to MC-CDM , 2000, 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications. ISSTA 2000. Proceedings (Cat. No.00TH8536).

[4]  Iain B. Collings,et al.  Joint MAP equalization and channel estimation for frequency-selective and frequency-flat fast-fading channels , 2001, IEEE Trans. Commun..

[5]  Michael Tüchler,et al.  On iterative equalization, estimation, and decoding , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[6]  H. Vincent Poor,et al.  An introduction to signal detection and estimation (2nd ed.) , 1994 .

[7]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[8]  Jochem Egle,et al.  Iterative Joint Equalization and Decoding Based on Soft Cholesky Equalization for General Complex Valued Modulation Symbols , 2002 .

[9]  James L. Massey,et al.  Proper complex random processes with applications to information theory , 1993, IEEE Trans. Inf. Theory.

[10]  Alain Glavieux,et al.  Turbo equalization over a frequency selective channel , 1997 .

[11]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[12]  Alain Glavieux,et al.  Iterative correction of intersymbol interference: Turbo-equalization , 1995, Eur. Trans. Telecommun..

[13]  D. Falconer,et al.  Least sum of squared errors (LSSE) channel estimation , 1991 .

[14]  S. R. Searle,et al.  On Deriving the Inverse of a Sum of Matrices , 1981 .

[15]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[16]  Johannes B. Huber,et al.  On improved multiuser detection with iterated soft decision interference cancellation , 1999, 1999 IEEE Communications Theory Mini-Conference (Cat. No.99EX352).

[17]  Michael Tüchler,et al.  Performance of soft iterative channel estimation in turbo equalization , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[18]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[19]  Roald Otnes,et al.  Improved Receivers for Digital High Frequency Communications: Iterative Channel Estimation, Equalization, and Decoding (Adaptive Turbo Equalization) , 2002 .

[20]  Behnam Shahrrava,et al.  Turbo equalization with iterative online SNR estimation , 2005, IEEE Wireless Communications and Networking Conference, 2005.

[21]  John G. Proakis,et al.  Digital Communications , 1983 .

[22]  William H. Press,et al.  Numerical recipes in C , 2002 .

[23]  Jürgen Lindner,et al.  Decision feedback equalization for MC-CDM with channel uncertainty , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[24]  Peter Grant,et al.  Digital Communications (3rd edition) , 2009 .

[25]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[26]  Alain Glavieux,et al.  Iterative correction of intersymbol interference : turbo-equalization : Iterative and Turbo decoding , 1995 .

[27]  John M. Cioffi,et al.  Probability density functions for analyzing multi-amplitude constellations in Rayleigh and Ricean channels , 1999, IEEE Trans. Commun..

[28]  Jingxian Wu,et al.  Optimal diversity combining based on noisy channel estimation , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[29]  K. Giridhar,et al.  Bayesian algorithms for blind equalization using parallel adaptive filtering , 1994, IEEE Trans. Commun..

[30]  Jürgen Lindner,et al.  Turbo Equalization with Parametric Uncertainties : Comparison of SNR Estimation Algorithms , 2005 .

[31]  Heinrich Meyr,et al.  On the error probability of linearly modulated signals on Rayleigh frequency-flat fading channels , 1990, IEEE Trans. Commun..

[32]  Dirk Dahlhaus,et al.  Bounds on the ergodic capacity of training-based multiple-antenna systems , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[33]  F. R. Gantmakher The Theory of Matrices , 1984 .

[34]  Jürgen Lindner,et al.  On pilot-assisted MAP detection in frequency-flat Rayleigh fading channels , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[35]  M. Mecking,et al.  App equalization for non-ideal channel knowledge , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[36]  Simon Haykin,et al.  Adaptive Filter Theory 4th Edition , 2002 .

[37]  Achilleas Anastasopoulos,et al.  Adaptive soft-input soft-output algorithms for iterative detection with parametric uncertainty , 2000, IEEE Trans. Commun..

[38]  Andrew C. Singer,et al.  Turbo equalization: principles and new results , 2002, IEEE Trans. Commun..

[39]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[40]  Jürgen Lindner,et al.  Block turbo equalization for imperfect channel state information , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..