The eigenvalue problem (A − λB)x = 0 for symmetric matrices of high order
暂无分享,去创建一个
[1] C. Bender,et al. The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric matrices , 1973 .
[2] S. Falk. Berechnung von Eigenwerten und Eigenvektoren normaler Matrizenpaare durch Ritz‐Iteration , 1973 .
[3] James Hardy Wilkinson,et al. Linear algebra , 1971, Handbook for automatic computation.
[4] I. Shavitt. Modification of Nesbet's algorithm for the iterative evaluation of eigenvalues and eigenvectors of large matrices , 1970 .
[5] C. Bender,et al. An iterative procedure for the calculation of the lowest real eigenvalue and eigenvector of a nonsymmetric matrix , 1970 .
[6] Hans Rudolf Schwarz,et al. Numerik symmetrischer Matrizen , 1970 .
[7] D. K. Faddeev,et al. Numerische Methoden der linearen Algebra , 1970 .
[8] R. Sauer,et al. Mathematische Hilfsmittel Des Ingenieurs , 1967 .
[9] R. Fletcher,et al. New iterative methods for solution of the eigenproblem , 1966 .
[10] R. Nesbet. Algorithm for Diagonalization of Large Matrices , 1965 .
[11] L. Collatz. The numerical treatment of differential equations , 1961 .
[12] M. Hestenes,et al. Solutions of Ax = gamma Bx1 , 1951 .
[13] M. Hestenes,et al. A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix , 1951 .