Plasmonic/magnetic graphene-based magnetofluoro-immunosensing platform for virus detection

[1]  E. Park,et al.  High‐Performance Biosensing Systems Based on Various Nanomaterials as Signal Transducers , 2018, Biotechnology journal.

[2]  E. Park,et al.  A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. , 2018, Biosensors & bioelectronics.

[3]  Jaewook Lee,et al.  Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection , 2017, Sensors.

[4]  E. Park,et al.  Binary Nanoparticle Graphene Hybrid Structure-Based Highly Sensitive Biosensing Platform for Norovirus-Like Particle Detection. , 2017, ACS applied materials & interfaces.

[5]  Jaebeom Lee,et al.  Magneto-optically active magnetoplasmonic graphene. , 2017, Chemical communications.

[6]  L. Deng,et al.  Ultrahigh Figure-of-Merit in Metal–Insulator–Metal Magnetoplasmonic Sensors Using Low Loss Magneto-optical Oxide Thin Films , 2017 .

[7]  Tomoyuki N. Tanaka,et al.  Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. , 2017, Biosensors & bioelectronics.

[8]  Giovanni Dietler,et al.  Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications , 2016, Scientific Reports.

[9]  J. Cuevas,et al.  Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors , 2016 .

[10]  Simon S. Park,et al.  Environmentally friendly preparation of nanoparticle-decorated carbon nanotube or graphene hybrid structures and their potential applications , 2016, Journal of Materials Science.

[11]  J. Cuevas,et al.  Resonant Enhancement of Magneto-Optical Activity Induced by Surface Plasmon Polariton Modes Coupling in 2D Magnetoplasmonic Crystals , 2015 .

[12]  V. Yannopapas,et al.  Strong Magnetochiral Dichroism in Suspensions of Magnetoplasmonic Nanohelices , 2015 .

[13]  Simon S. Park,et al.  Magnetically aligned iron oxide/gold nanoparticle-decorated carbon nanotube hybrid structure as a humidity sensor. , 2015, ACS applied materials & interfaces.

[14]  D. Pang,et al.  Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. , 2015, Biosensors & bioelectronics.

[15]  Kwangnak Koh,et al.  Dual-Mode SERS-Fluorescence Immunoassay Using Graphene Quantum Dot Labeling on One-Dimensional Aligned Magnetoplasmonic Nanoparticles. , 2015, ACS applied materials & interfaces.

[16]  Simon S. Park,et al.  A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. , 2015, Biosensors & bioelectronics.

[17]  Matthew O'Donnell,et al.  Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging. , 2015, ACS nano.

[18]  M. Gheorghiu,et al.  Magneto-plasmonic biosensor with enhanced analytical response and stability. , 2015, Biosensors & bioelectronics.

[19]  S. van Dijken,et al.  Ultrasensitive and label-free molecular level detection enabled by light phase control in magnetoplasmonic nanoantennas , 2015, Nature Communications.

[20]  Chang-Pan Liu,et al.  Clinical characteristics of children and adults hospitalized for influenza virus infection. , 2014, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[21]  Jaebeom Lee,et al.  Plasmon-induced photoluminescence immunoassay for tuberculosis monitoring using gold-nanoparticle-decorated graphene. , 2014, ACS applied materials & interfaces.

[22]  Q. Li,et al.  Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1. , 2013, Analytica chimica acta.

[23]  Vijayender Bhalla,et al.  Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes , 2012, Scientific Reports.

[24]  Qinghua Xu,et al.  Enhanced optical properties of graphene oxide-Au nanocrystal composites. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[25]  Shengtong Sun,et al.  Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets. , 2011, Physical chemistry chemical physics : PCCP.

[26]  O. Uzunlar,et al.  Pandemic influenza H1N1 2009 virus infection in pregnancy in Turkey. , 2011, Taiwanese journal of obstetrics & gynecology.

[27]  K. Koh,et al.  Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity , 2011 .

[28]  Guoqing Lu,et al.  Pandemic (H1N1) 2009 virus revisited: an evolutionary retrospective. , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[29]  C. López,et al.  Magnetophotonic response of three-dimensional opals. , 2011, ACS nano.

[30]  Jeong-Yeol Yoon,et al.  Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix , 2010, Analytical and bioanalytical chemistry.

[31]  Chien Chou,et al.  Detection of swine-origin influenza A (H1N1) viruses using a localized surface plasmon coupled fluorescence fiber-optic biosensor , 2010, Biosensors and Bioelectronics.

[32]  M. Kieny,et al.  The 2009 A (H1N1) influenza virus pandemic: A review. , 2010, Vaccine.

[33]  Ronald Walsworth,et al.  Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. , 2009, Nano letters.

[34]  Jaebeom Lee,et al.  Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. , 2007, Nature materials.

[35]  Jaebeom Lee,et al.  Nanoparticle assemblies with molecular springs: a nanoscale thermometer. , 2005, Angewandte Chemie.

[36]  Nicholas A. Kotov,et al.  Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon−Exciton Interactions, Luminescence Enhancement, and Collective Effects , 2004 .