The Evershed Effect Observed with 0.2'' Angular Resolution

We present an analysis of the Evershed effect observed with a resolution of 0.2''. Using the new Swedish 1 m Solar Telescope and its Littrow spectrograph, we scan a significant part of a sunspot penumbra. Spectra of the nonmagnetic line Fe I λ7090.4 allows us to measure Doppler shifts without magnetic contamination. The observed line profiles are asymmetric. The Doppler shift depends on the part of the line used for measuring, indicating that the velocity structure of penumbrae remains unresolved, even with our angular resolution. The observed line profiles are properly reproduced if two components with velocities between zero and several km s-1 coexist in the resolution elements. Using Doppler shifts at fixed line depths, we find a local correlation between upflows and bright structures and between downflows and dark structures. This association is not specific to the outer penumbra, but it also occurs in the inner penumbra. The existence of such a correlation was originally reported in 1969 by Beckers and Schröter, and it is suggestive of energy transport by convection in penumbrae.

[1]  La Laguna,et al.  Quiet Sun Magnetic Fields from Simultaneous Inversions of Visible and Infrared Spectropolarimetric Observations , 2006, astro-ph/0604381.

[2]  R. Schlichenmaier,et al.  Multi-line spectroscopy of dark-cored penumbral filaments , 2005 .

[3]  Tenerife,et al.  High-Resolution Proper Motions in a Sunspot Penumbra , 2005, astro-ph/0510220.

[4]  K. Puschmann,et al.  Spectropolarimetry of a sunspot at disk centre , 2005 .

[5]  G. Scharmer,et al.  Fine structure, magnetic field and heating of sunspot penumbrae , 2005, astro-ph/0508504.

[6]  Mats G. Lofdahl,et al.  Inclination of magnetic fields and flows in sunspot penumbrae , 2005 .

[7]  J. Almeida Physical properties of the solar magnetic photosphere under the MISMA hypothesis. III. Sunspot at disk center , 2005 .

[8]  R. Schlichenmaier,et al.  On the relation between penumbral intensity and flow filaments , 2005 .

[9]  N. Weiss,et al.  FINE STRUCTURE IN SUNSPOTS , 2004 .

[10]  R. Schlichenmaier,et al.  Two-dimensional spectroscopy of a sunspot - I. Properties of the penumbral fine structure , 2004 .

[11]  R. Schlichenmaier,et al.  Two-dimensional spectroscopy of a sunspot II. Penumbral line asymmetries , 2004 .

[12]  Mats G. Lofdahl,et al.  Penumbral structure at 0.1 resolution. I. General appearance and power spectra , 2004 .

[13]  N. Weiss,et al.  The Origin of Penumbral Structure in Sunspots: Downward Pumping of Magnetic Flux , 2004 .

[14]  S. Solanki,et al.  On the heat transport in a sunspot penumbra , 2003 .

[15]  S. Solanki,et al.  Three dimensional structure of a regular sunspot from the inversion of IR Stokes profiles , 2003 .

[16]  H Germany,et al.  Simultaneous Visible and Infrared Spectropolarimetry of a Solar Internetwork Region , 2003, astro-ph/0309727.

[17]  Sami K. Solanki,et al.  Sunspots: An overview , 2003 .

[18]  Tapio K. Korhonen,et al.  The 1-meter Swedish solar telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[19]  Mark Shand,et al.  Adaptive optics system for the new Swedish solar telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[20]  P. Murdin,et al.  Encyclopedia of Astronomy and Astrophysics , 2002 .

[21]  Dan Kiselman,et al.  Dark cores in sunspot penumbral filaments , 2002, Nature.

[22]  J. C. del Toro Iniesta,et al.  Optical Tomography of a Sunspot. III. Velocity Stratification and the Evershed Effect , 2001 .

[23]  P. Matthews,et al.  Solar Magnetoconvection – (Invited Review) , 2000 .

[24]  J. Bonet,et al.  The Spectrum of Fluctuations across Penumbral Filaments , 1998 .

[25]  Robert F. Stein,et al.  Simulations of Solar Granulation. I. General Properties , 1998 .

[26]  R. Schlichenmaier,et al.  A Dynamical Model for the Penumbral Fine Structure and the Evershed Effect in Sunspots , 1997, astro-ph/9712029.

[27]  V. Pillet,et al.  Line Asymmetries and the Microstructure of Photospheric Magnetic Fields , 1996 .

[28]  T. Rimmele Sun Center Observations of the Evershed Effect , 1995 .

[29]  J. Bonet,et al.  A High-Resolution Study of Inhomogeneities in Sunspot Umbrae , 1993 .

[30]  J. Almeida,et al.  Observation and interpretation of the asymmetric Stokes Q, U, and V line profiles in sunspots , 1992 .

[31]  J. H. Thomas,et al.  A siphon-flow model of the photospheric Evershed flow in a sunspot , 1992 .

[32]  J. Beckers Material motions in sunspot umbrae. , 1977 .

[33]  A. Golovko The crossover effect in sunspots and the fine structure of penumbra , 1974 .

[34]  R. E. Danielson The Structure of Sunspot Penumbras. II. Theoretical. , 1961 .

[35]  J. Evershed Radial movement in sun-spots , 1909 .

[36]  T. Rimmele,et al.  Three-dimensional structure of solar active regions , 1998 .

[37]  Haimin Wang,et al.  The magnetic and velocity fields of solar active regions; Proceedings of the 141th IAU Colloquium, Beijing, China, Sept. 6-12, 1992 , 1993 .

[38]  B. Lites Sunspot Oscillations: Observations and Implications , 1992 .

[39]  N. Weiss,et al.  Sunspots : theory and observations , 1992 .

[40]  N. Weiss,et al.  The theory of sunspots , 1992 .

[41]  M. Vázquez,et al.  The role of fine-scale magnetic fields on the structure of the solar atmosphere , 1987 .

[42]  V. Grigorjev,et al.  The crossover and magneto-optical effects in sunspot spectra , 1971 .

[43]  E. Wiehr,et al.  Magnetically non split lines in penumbrae , 1971 .

[44]  A. Wittmann,et al.  The intensity, velocity and magnetic structure of a sunspot region , 1969 .

[45]  D. Spicer,et al.  Solar Physics , 1881, Nature.