Calibration of the local volatility in a trinomial tree using Tikhonov regularization
暂无分享,去创建一个
[1] Goldman,et al. Implied Trinomial Trees of the Volatility Smile , 1996 .
[2] Emanuel Derman,et al. Implied Trinomial Tress of the Volatility Smile , 1996 .
[3] A. N. Tikhonov,et al. REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .
[4] H. Engl,et al. Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .
[5] Dominick Samperi,et al. Calibrating a Diffusion Pricing Model with Uncertain Volatility: Regularization and Stability , 2002 .
[6] Riccardo Rebonato,et al. Volatility and Correlation: In the Pricing of Equity, FX, and Interest-Rate Options , 1999 .
[7] Rama Cont,et al. Calibration of Jump-Diffusion Option Pricing Models: A Robust Non-Parametric Approach , 2002 .
[8] T. Coleman,et al. Reconstructing the Unknown Local Volatility Function , 1999 .
[9] Marco Avellaneda,et al. Calibrating Volatility Surfaces Via Relative-Entropy Minimization , 1996 .
[10] Rama Cont,et al. Dynamics of implied volatility surfaces , 2002 .
[11] Thomas F. Coleman,et al. Reconstructing the unknown volatility function , 1998 .
[12] Leif Andersen,et al. The equity option volatility smile: an implicit finite-difference approach , 1997 .
[13] Emanuel Derman,et al. STOCHASTIC IMPLIED TREES: ARBITRAGE PRICING WITH STOCHASTIC TERM AND STRIKE STRUCTURE OF VOLATILITY , 1998 .
[14] M. Rubinstein.. Implied Binomial Trees , 1994 .
[15] Jeff Fleming,et al. Implied volatility functions: empirical tests , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).
[16] Stéphane Crépey,et al. Calibration of the Local Volatility in a Generalized Black-Scholes Model Using Tikhonov Regularization , 2003, SIAM J. Math. Anal..
[17] Stéphane Crépey. Contribution a des methodes numeriques appliquees a la finance et aux jeux differentiels , 2001 .
[18] Victor Isakov,et al. Recovery of volatility coefficient by linearization , 2002 .
[19] Heinz W. Engl,et al. Weakly closed nonlinear operators and parameter identification in parabolic equations by tikhonov regularization , 1994 .
[20] Jesper Andreasen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .
[21] Endre Süli,et al. Computation of Deterministic Volatility Surfaces , 1998 .
[22] Leif Andersen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .
[23] James N. Bodurtha,et al. Nonparametric estimation of an implied volatility surface , 1999 .
[24] V. Isakov,et al. TOPICAL REVIEW: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets , 1999 .
[25] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[26] Henri Berestycki,et al. Asymptotics and calibration of local volatility models , 2002 .
[27] Yves Achdou,et al. VOLATILITY SMILE BY MULTILEVEL LEAST SQUARE , 2002 .
[28] Jong-Shi Pang,et al. A mathematical programming with equilibrium constraints approach to the implied volatility surface of American options , 2000 .
[29] Stanley Osher,et al. A technique for calibrating derivative security pricing models: numerical solution of an inverse problem , 1997 .