Calibration of the local volatility in a trinomial tree using Tikhonov regularization

Following an approach introduced by Lagnado and Osher (Lagnado R and Osher S 1997 J. Comput. Finance 1 13–25), we study the application of Tikhonov regularization to the financial inverse problem of calibrating a local volatility function from observed vanilla option prices. Moreover, we provide a unified treatment for this problem in two different settings: first, the generalized Black–Scholes model, and second, a trinomial tree discretization. We present serial and parallel implementations of the method in the discrete setting, using a probabilistic interpretation to compute, at significantly reduced cost, the gradient of the cost criterion. We illustrate the stability of this regularized calibration procedure by numerical examples. Finally we extend this methodology to the problem of calibration with American option prices.

[1]  Goldman,et al.  Implied Trinomial Trees of the Volatility Smile , 1996 .

[2]  Emanuel Derman,et al.  Implied Trinomial Tress of the Volatility Smile , 1996 .

[3]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[4]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[5]  Dominick Samperi,et al.  Calibrating a Diffusion Pricing Model with Uncertain Volatility: Regularization and Stability , 2002 .

[6]  Riccardo Rebonato,et al.  Volatility and Correlation: In the Pricing of Equity, FX, and Interest-Rate Options , 1999 .

[7]  Rama Cont,et al.  Calibration of Jump-Diffusion Option Pricing Models: A Robust Non-Parametric Approach , 2002 .

[8]  T. Coleman,et al.  Reconstructing the Unknown Local Volatility Function , 1999 .

[9]  Marco Avellaneda,et al.  Calibrating Volatility Surfaces Via Relative-Entropy Minimization , 1996 .

[10]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[11]  Thomas F. Coleman,et al.  Reconstructing the unknown volatility function , 1998 .

[12]  Leif Andersen,et al.  The equity option volatility smile: an implicit finite-difference approach , 1997 .

[13]  Emanuel Derman,et al.  STOCHASTIC IMPLIED TREES: ARBITRAGE PRICING WITH STOCHASTIC TERM AND STRIKE STRUCTURE OF VOLATILITY , 1998 .

[14]  M. Rubinstein. Implied Binomial Trees , 1994 .

[15]  Jeff Fleming,et al.  Implied volatility functions: empirical tests , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[16]  Stéphane Crépey,et al.  Calibration of the Local Volatility in a Generalized Black-Scholes Model Using Tikhonov Regularization , 2003, SIAM J. Math. Anal..

[17]  Stéphane Crépey Contribution a des methodes numeriques appliquees a la finance et aux jeux differentiels , 2001 .

[18]  Victor Isakov,et al.  Recovery of volatility coefficient by linearization , 2002 .

[19]  Heinz W. Engl,et al.  Weakly closed nonlinear operators and parameter identification in parabolic equations by tikhonov regularization , 1994 .

[20]  Jesper Andreasen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .

[21]  Endre Süli,et al.  Computation of Deterministic Volatility Surfaces , 1998 .

[22]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[23]  James N. Bodurtha,et al.  Nonparametric estimation of an implied volatility surface , 1999 .

[24]  V. Isakov,et al.  TOPICAL REVIEW: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets , 1999 .

[25]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[26]  Henri Berestycki,et al.  Asymptotics and calibration of local volatility models , 2002 .

[27]  Yves Achdou,et al.  VOLATILITY SMILE BY MULTILEVEL LEAST SQUARE , 2002 .

[28]  Jong-Shi Pang,et al.  A mathematical programming with equilibrium constraints approach to the implied volatility surface of American options , 2000 .

[29]  Stanley Osher,et al.  A technique for calibrating derivative security pricing models: numerical solution of an inverse problem , 1997 .