Two-Sided Matching Based Cooperative Spectrum Sharing

Dynamic spectrum access (DSA) can effectively improve the spectrum efficiency and alleviate the spectrum scarcity, by allowing unlicensed secondary users (SUs) to access the licensed spectrum of primary users (PUs) opportunistically. Cooperative spectrum sharing is a new promising paradigm to provide necessary <italic>incentives</italic> for both PUs and SUs in dynamic spectrum access. The key idea is that SUs relay the traffic of PUs in exchange for the access time on the PUs’ licensed spectrum. In this paper, we formulate the cooperative spectrum sharing between multiple PUs and multiple SUs as a <italic>two-sided market</italic>, and study the market equilibrium under both complete and incomplete information. First, we characterize the sufficient and necessary conditions for the market equilibrium. We analytically show that there may exist multiple market equilibria, among which there is always a unique <italic> Pareto-optimal</italic> equilibrium for PUs (called <inline-formula><tex-math notation="LaTeX"> $\sf{PU\hbox{-}Optimal\hbox{-}EQ}$</tex-math><alternatives><inline-graphic xlink:href="huang-ieq1-2557794.gif"/> </alternatives></inline-formula>), in which <italic>every</italic> PU achieves a utility no worse than in any other equilibrium. Then, we show that under complete information, the unique Pareto-optimal equilibrium <inline-formula> <tex-math notation="LaTeX">$\sf{PU\hbox{-}Optimal\hbox{-}EQ}$</tex-math><alternatives> <inline-graphic xlink:href="huang-ieq2-2557794.gif"/></alternatives></inline-formula> can always be achieved despite the competition among PUs; whereas, under incomplete information, the <inline-formula><tex-math notation="LaTeX"> $\sf{PU\hbox{-}Optimal\hbox{-}EQ}$</tex-math><alternatives><inline-graphic xlink:href="huang-ieq3-2557794.gif"/> </alternatives></inline-formula> may not be achieved due to the mis-representations of SUs (in reporting their private information). Regarding this, we further study the worse-case equilibrium for PUs, and characterize a <italic>Robust </italic> equilibrium for PUs (called <inline-formula><tex-math notation="LaTeX">$\sf{PU\hbox{-}Robust\hbox{-}EQ}$ </tex-math><alternatives><inline-graphic xlink:href="huang-ieq4-2557794.gif"/></alternatives></inline-formula>), which provides <italic>every</italic> PU a guaranteed utility under all possible mis-representation behaviors of SUs. Numerical results show that in a typical network where the number of PUs and SUs are different, the performance gap between <inline-formula><tex-math notation="LaTeX">$\sf{PU\hbox{-}Optimal\hbox{-}EQ}$</tex-math><alternatives> <inline-graphic xlink:href="huang-ieq5-2557794.gif"/></alternatives></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\sf{PU\hbox{-}Robust\hbox{-}EQ}$</tex-math><alternatives> <inline-graphic xlink:href="huang-ieq6-2557794.gif"/></alternatives></inline-formula> is quite small (e.g., less than 10 percent in the simulations).

[1]  Lin Gao,et al.  An Integrated Contract and Auction Design for Secondary Spectrum Trading , 2013, IEEE Journal on Selected Areas in Communications.

[2]  Dusit Niyato,et al.  Spectrum trading in cognitive radio networks: A market-equilibrium-based approach , 2008, IEEE Wirel. Commun..

[3]  Baochun Li,et al.  Efficient Resource Allocation with Flexible Channel Cooperation in OFDMA Cognitive Radio Networks , 2010, 2010 Proceedings IEEE INFOCOM.

[4]  Qian Zhang,et al.  Stackelberg game for utility-based cooperative cognitiveradio networks , 2009, MobiHoc '09.

[5]  Abdulla K. Al-Ali,et al.  Simulating dynamic spectrum access using ns-3 for wireless networks in smart environments , 2014, 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops).

[6]  Kang G. Shin,et al.  Cognitive radios for dynamic spectrum access: from concept to reality , 2010, IEEE Wireless Communications.

[7]  Gregory W. Wornell,et al.  Cooperative diversity in wireless networks: Efficient protocols and outage behavior , 2004, IEEE Transactions on Information Theory.

[8]  V. Crawford,et al.  Job Matching with Heterogeneous Firms and Workers , 1981 .

[9]  Jianwei Huang Market mechanisms for cooperative spectrum trading with incomplete network information , 2013, IEEE Communications Magazine.

[10]  Lin Gao,et al.  Contract-based cooperative spectrum sharing , 2011, 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[11]  Xinbing Wang,et al.  Spectrum Trading in Cognitive Radio Networks: A Contract-Theoretic Modeling Approach , 2011, IEEE Journal on Selected Areas in Communications.

[12]  Xiaoying Gan,et al.  Cooperative Spectrum Sharing in Cognitive Radio Networks: A Game-Theoretic Approach , 2010, 2010 IEEE International Conference on Communications.

[13]  Lei Cao,et al.  Multi-User Cooperative Communications with Relay-Coding for Uplink IMT-Advanced 4G Systems , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[14]  Jie Chen,et al.  Distributed Channel Assignment and Routing in Multiradio Multichannel Multihop Wireless Networks , 2006, IEEE Journal on Selected Areas in Communications.

[15]  Halim Yanikomeroglu,et al.  Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions , 2014, IEEE Communications Magazine.

[16]  Zhi Ding,et al.  Opportunistic spectrum access in cognitive radio networks , 2008, IJCNN.

[17]  Gerald L. Thompson,et al.  Computing the Core of a Market Game , 1980 .

[18]  Paramvir Bahl,et al.  SenseLess: A database-driven white spaces network , 2011, 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[19]  L. Shapley,et al.  The assignment game I: The core , 1971 .

[20]  Ian F. Akyildiz,et al.  A survey on spectrum management in cognitive radio networks , 2008, IEEE Communications Magazine.

[21]  V. Crawford,et al.  Job Matching, Coalition Formation, and Gross Substitutes , 1982 .

[22]  L. S. Shapley,et al.  College Admissions and the Stability of Marriage , 2013, Am. Math. Mon..

[23]  Branka Vucetic,et al.  Cognitive Radio Relay Networks with Multiple Primary and Secondary Users: Distributed Stable Matching Algorithms for Spectrum Access , 2011, 2011 IEEE International Conference on Communications (ICC).

[24]  Malhar Chauhan,et al.  5G: Future Mobile Technology-Vision 2020 , 2012 .

[25]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[26]  Chengshu Li,et al.  Opportunistic spectrum access in cognitive radio networks , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[27]  A. Roth Misrepresentation and stability in the marriage problem , 1984 .

[28]  Qian Zhang,et al.  Cooperative Communication-Aware Spectrum Leasing in Cognitive Radio Networks , 2010, 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN).

[29]  E. Maasland,et al.  Auction Theory , 2021, Springer Texts in Business and Economics.

[30]  Umberto Spagnolini,et al.  Spectrum Leasing to Cooperating Secondary Ad Hoc Networks , 2008, IEEE Journal on Selected Areas in Communications.

[31]  Parag A. Pathak,et al.  Appendix to "Incentives and Stability in Large Two-Sided Matching Markets" , 2009 .

[32]  Yang Han,et al.  Cooperative spectrum sharing via controlled amplify-and-forward relaying , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[33]  Xia Zhou,et al.  Traffic-Driven Dynamic Spectrum Auctions , 2008, 2008 5th IEEE Annual Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops.

[34]  Mo Dong,et al.  Combinatorial auction with time-frequency flexibility in cognitive radio networks , 2012, 2012 Proceedings IEEE INFOCOM.

[35]  Yang Yan,et al.  Dynamic Spectrum Negotiation with Asymmetric Information , 2011, GAMENETS.

[36]  Michael L. Honig,et al.  Auction-Based Spectrum Sharing , 2006, Mob. Networks Appl..

[37]  Xuemin Shen Device-to-device communication in 5G cellular networks , 2015, IEEE Network.

[38]  Martin Döttling,et al.  Radio technologies and concepts for IMT-Advanced , 2009 .

[39]  Xia Zhou,et al.  TRUST: A General Framework for Truthful Double Spectrum Auctions , 2009, IEEE INFOCOM 2009.

[40]  Guillaume Andrieux,et al.  Time Synchronization for Cooperative Communication in Wireless Sensor Networks , 2012, Wirel. Pers. Commun..

[41]  Brian M. Sadler,et al.  A Survey of Dynamic Spectrum Access , 2007, IEEE Signal Processing Magazine.

[42]  Yunnan Wu,et al.  Allocating dynamic time-spectrum blocks in cognitive radio networks , 2007, MobiHoc '07.

[43]  Lin Gao,et al.  Cooperative Spectrum Sharing: A Contract-Based Approach , 2014, IEEE Transactions on Mobile Computing.

[44]  Xinbing Wang,et al.  MAP: Multiauctioneer Progressive Auction for Dynamic Spectrum Access , 2011, IEEE Transactions on Mobile Computing.