Trans-repression of the mouse c-fos promoter: A novel mechanism of fos-mediated trans-regulation

[1]  A. Schönthal,et al.  Autoregulation of fos: the dyad symmetry element as the major target of repression. , 1989, The EMBO journal.

[2]  A. Nordheim,et al.  Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction , 1989, Nature.

[3]  B. Franza,et al.  Two distinct cellular phosphoproteins bind to the c‐fos serum response element. , 1989, The EMBO journal.

[4]  J. Visvader,et al.  Fos-Jun interaction: mutational analysis of the leucine zipper domain of both proteins. , 1989, Genes & development.

[5]  R. Müller,et al.  Two functionally different regions in Fos are required for the sequence-specific DNA interaction of the Fos/Jun protein complex , 1989, Nature.

[6]  R. Tjian,et al.  Leucine repeats and an adjacent DNA binding domain mediate the formation of functional cFos-cJun heterodimers. , 1989, Science.

[7]  T. Curran,et al.  Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains. , 1989, Science.

[8]  R. Roeder,et al.  An AP1-binding site in the c-fos gene can mediate induction by epidermal growth factor and 12-O-tetradecanoyl phorbol-13-acetate , 1989, Molecular and cellular biology.

[9]  A. Nordheim,et al.  The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter , 1989, Cell.

[10]  T. Jenuwein,et al.  The leucine repeat motif in Fos protein mediates complex formation with Jun/AP-1 and is required for transformation , 1989, Cell.

[11]  R. Roeder,et al.  Multiple sequence elements in the c-fos promoter mediate induction by cAMP. , 1989, Genes & development.

[12]  P. S. Kim,et al.  Evidence that the leucine zipper is a coiled coil. , 1989, Science.

[13]  Richard Treisman,et al.  Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element , 1988, Cell.

[14]  T. Kouzarides,et al.  The role of the leucine zipper in the fos–jun interaction , 1988, Nature.

[15]  I. Verma,et al.  Direct interaction between fos and jun nuclear oncoproteins: role of the 'leucine zipper' domain , 1988, Nature.

[16]  Michael E. Greenberg,et al.  c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities , 1988, Cell.

[17]  Y. Nakabeppu,et al.  DNA binding activities of three murine Jun proteins: Stimulation by Fos , 1988, Cell.

[18]  B. Franza,et al.  Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. , 1988, Genes & development.

[19]  R. Treisman,et al.  Fos C‐terminal mutations block down‐regulation of c‐fos transcription following serum stimulation. , 1988, The EMBO journal.

[20]  J. Visvader,et al.  Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. , 1988, Genes & development.

[21]  B. Franza,et al.  Fos and jun: The AP-1 connection , 1988, Cell.

[22]  M. Karin,et al.  Activation of the c-fos gene by UV and phorbol ester: different signal transduction pathways converge to the same enhancer element. , 1988, Oncogene.

[23]  I. Verma,et al.  fos-associated cellular p39 is related to nuclear transcription factor AP-1 , 1988, Cell.

[24]  T. Hunter,et al.  The c-fos protein interacts with c-Jun AP-1 to stimulate transcription of AP-1 responsive genes , 1988, Cell.

[25]  M. Yaniv,et al.  Transcriptional activation of c-jun during the G0/G1 transition in mouse fibroblasts , 1988, Nature.

[26]  A. Schönthal,et al.  Requirement for fos gene expression in the transcriptional activation of collagenase by other oncogenes and phorbol esters , 1988, Cell.

[27]  I. Verma,et al.  Transcriptional autoregulation of the proto-oncogene fos , 1988, Nature.

[28]  S. McKnight,et al.  The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. , 1988, Science.

[29]  R. Tjian,et al.  Fos-associated protein p39 is the product of the jun proto-oncogene. , 1988, Science.

[30]  T. Hunter,et al.  Oncogene jun encodes a sequence-specific trans- activator similar to AP-1 , 1988, Nature.

[31]  B. Franza,et al.  The Fos complex and Fos-related antigens recognize sequence elements that contain AP-1 binding sites. , 1988, Science.

[32]  B. Spiegelman,et al.  Common DNA binding site for Fos protein complexesand transcription factor AP-1 , 1988, Cell.

[33]  R. Tjian,et al.  Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. , 1987, Science.

[34]  R. Roeder,et al.  c-fos sequence necessary for basal expression and induction by epidermal growth factor, 12-O-tetradecanoyl phorbol-13-acetate and the calcium ionophore , 1987, Molecular and cellular biology.

[35]  R. Roeder,et al.  Purification of the c-fos enhancer-binding protein , 1987, Molecular and cellular biology.

[36]  R. Treisman,et al.  Identification and purification of a polypeptide that binds to the c‐fos serum response element. , 1987, The EMBO journal.

[37]  M. Karin,et al.  Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor , 1987, Cell.

[38]  R. Tjian,et al.  Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements , 1987, Cell.

[39]  J. Piette,et al.  Two different factors bind to the alpha‐domain of the polyoma virus enhancer, one of which also interacts with the SV40 and c‐fos enhancers. , 1987, The EMBO journal.

[40]  M. Greenberg,et al.  Mutation of the c-fos gene dyad symmetry element inhibits serum inducibility of transcription in vivo and the nuclear regulatory factor binding in vitro , 1987, Molecular and cellular biology.

[41]  B. Cochran,et al.  Inducible binding of a factor to the c-fos regulatory region. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Jenuwein,et al.  Structure-function analysis of fos protein: A single amino acid change activates the immortalizing potential of v-fos , 1987, Cell.

[43]  R. Roeder,et al.  Inducible binding of a factor to the c-fos enhancer , 1986, Cell.

[44]  R. Weinberg,et al.  Multiple protein-binding sites in the 5'-flanking region regulate c-fos expression , 1986, Molecular and cellular biology.

[45]  J. Lillie,et al.  An adenovirus E1a protein region required for transformation and transcriptional repression , 1986, Cell.

[46]  Richard Treisman,et al.  Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors , 1986, Cell.

[47]  I. Verma,et al.  Identification of a transcriptional enhancer element upstream from the proto-oncogene fos. , 1985, Science.

[48]  R. Bravo,et al.  Regulation of c‐fos transcription in mouse fibroblasts: identification of DNase I‐hypersensitive sites and regulatory upstream sequences. , 1985, The EMBO journal.

[49]  Richard Treisman,et al.  Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences , 1985, Cell.

[50]  T. Curran,et al.  Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Michael E. Greenberg,et al.  Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene , 1984, Nature.

[52]  T. Curran,et al.  c-fos protein can induce cellular transformation: A novel mechanism of activation of a cellular oncogene , 1984, Cell.

[53]  T. Curran,et al.  Analysis of FBJ-MuSV provirus and c-fos (mouse) gene reveals that viral and cellular fos gene products have different carboxy termini , 1983, Cell.

[54]  I. Pastan,et al.  The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Z. Siegfried,et al.  Transcription activation by serum, PDGF, and TPA through the c-fos DSE: cell type specific requirements for induction. , 1989, Oncogene.

[56]  M. Karin,et al.  The Fos and Jun/AP-1 proteins are involved in the downregulation of Fos transcription. , 1989, Oncogene.

[57]  T. Curran,et al.  Induction of c-fos gene and protein by growth factors precedes activation of c-myc , 1984, Nature.

[58]  Jonathan A. Cooper,et al.  Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein , 1984, Nature.