Recursive Identification of Micropositioning Stage Based on Sandwich Model With Hysteresis

In this brief, a recursive identification method for a micropositioning stage with piezo actuators is proposed. This method utilizes a sandwich model for describing nonlinear dynamics of the stage. In this model, both power amplifier with filtering circuit and the flexure hinge with load are described by linear dynamic submodels, respectively, whereas a Duhem hysteresis submodel is employed for describing the performance of the piezo actuator. An extended recursive identification algorithm is proposed for estimating the corresponding parameters of the sandwich model, and the convergence of the proposed algorithm is analyzed. Finally, the experimental results of a real positioning stage with piezo actuators are presented and discussed.

[1]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[2]  Bayu Jayawardhana,et al.  Dissipativity of general Duhem hysteresis models , 2011, IEEE Conference on Decision and Control and European Control Conference.

[3]  Zhen Zhang,et al.  Precision tracking control of piezoelectric actuator based on bouc-wen hysteresis compensator , 2012 .

[4]  Changyun Wen,et al.  Identification for systems with bounded noise , 1997, IEEE Trans. Autom. Control..

[5]  Hui Chen,et al.  A neural networks based model for rate-dependent hysteresis for piezoceramic actuators , 2008 .

[6]  Isaak D. Mayergoyz,et al.  The science of hysteresis , 2005 .

[7]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[8]  B. D. Coleman,et al.  A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials , 1986 .

[9]  M. Boutayeb,et al.  Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..

[10]  Keith R. Godfrey,et al.  Identification of Wiener-Hammerstein models using linear interpolation in the frequency domain (LIFRED) , 2002, IEEE Trans. Instrum. Meas..

[11]  Philippe Lutz,et al.  Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.

[12]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[13]  Yonghong Tan,et al.  Nonlinear Modeling and Decoupling Control of XY Micropositioning Stages With Piezoelectric Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[14]  M. Bontayeb Identification of nonlinear systems in the presence of unknown but bounded disturbances , 2000, IEEE Trans. Autom. Control..

[15]  Yi-Cheng Huang,et al.  ULTRA‐FINE TRACKING CONTROL ON PIEZOELECTRIC ACTUATED MOTION STAGE USING PIEZOELECTRIC HYSTERETIC MODEL , 2008 .

[16]  J. Voros Identification of Nonlinear Dynamic Systems Using Extended Hammerstein and Wiener Models , 1995 .

[17]  Qingsong Xu,et al.  Model Predictive Discrete-Time Sliding Mode Control of a Nanopositioning Piezostage Without Modeling Hysteresis , 2012, IEEE Transactions on Control Systems Technology.

[18]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[19]  Johan Schoukens,et al.  Computing an initial estimate of a Wiener-Hammerstein system with a random phase multisine excitation , 2005, IEEE Transactions on Instrumentation and Measurement.

[20]  A. Visintin Differential models of hysteresis , 1994 .

[21]  Bayu Jayawardhana,et al.  Stability of systems with the Duhem hysteresis operator: The dissipativity approach , 2012, Autom..

[22]  Ruoyu Li,et al.  Recursive Identification of Sandwich Systems With Dead Zone and Application , 2009, IEEE Transactions on Control Systems Technology.

[23]  B. Bhikkaji,et al.  Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning , 2008, IEEE/ASME Transactions on Mechatronics.

[24]  Yudong Zhang,et al.  IMAGE-BASED HYSTERESIS MODELING AND COMPENSATION FOR AN AFM PIEZO-SCANNER , 2009 .

[25]  Yonghong Tan,et al.  On-line identification algorithm and convergence analysis for sandwich systems with backlash , 2011 .

[26]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.