The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm

article i nfo Article history: Accepted 3 October 2012 Available online 29 October 2012 Resource management ensures that a project is completed on time and at cost, and that its quality is as previously defined; nevertheless, resources are scarce and their use in the activities of the project leads to conflicts in the schedule. Resource leveling problems consider how to make the resource consumption as efficient as possible. This paper presents an Adaptive Genetic Algorithm for the Resource Leveling Problem, and its novelty lies in using the Weibull distribution to establish an estimation of the global optimum as a ter- mination condition. The extension of the project deadline with a penalty is allowed, avoiding the increase in the project criticality. The algorithm is tested with the Project Scheduling Problem Library PSPLIB. The pro- posed algorithm is implemented using VBA for Excel 2010 to provide a flexible and powerful decision support system that enables practitioners to choose between different feasible solutions to a problem in realistic environments.

[1]  C. A. Romano,et al.  Un algoritmo matricial RUPSP / GRUPSP "sin interrupción" para la planificación de la producción bajo metodología Lean Construction basado en procesos productivos , 2011 .

[2]  V. Maniezzo,et al.  An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation , 1998 .

[3]  Víctor Yepes,et al.  On the Weibull cost estimation of building frames designed by simulated annealing , 2010 .

[4]  I. Clark,et al.  The management of human resources in project management‐led organizations , 2005 .

[5]  Roman Słowiński,et al.  Advances in project scheduling , 1989 .

[6]  Sou-Sen Leu,et al.  Metaheuristics for project and construction management – A state-of-the-art review , 2011 .

[7]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[8]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Julia Rieck,et al.  Mixed-integer linear programming for resource leveling problems , 2012, Eur. J. Oper. Res..

[10]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[11]  H. N. Ahuja Construction performance control by networks , 1976 .

[12]  Rinaldo Rinaldi,et al.  Optimal resource leveling using non-serial dyanamic programming , 1994 .

[13]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[14]  Saad H.S. Al-Jibouri Effects of resource management regimes on project schedule , 2002 .

[15]  Mohammed A. Salem Hiyassat Modification of Minimum Moment Approach in Resource Leveling , 2000 .

[16]  Jonas Söderlund,et al.  HRM in project‐intensive firms: Changes and challenges , 2006 .

[17]  Klaus Neumann,et al.  Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints , 2000, Eur. J. Oper. Res..

[18]  Julio C. Martinez,et al.  Resource Leveling Based on the Modified Minimum Moment Heuristic , 1993 .

[19]  Robert B. Harris Packing Method for Resource Leveling (PACK) , 1990 .

[20]  Moonseo Park,et al.  Model-based dynamic resource management for construction projects , 2005 .

[21]  Miroslaw J. Skibniewski,et al.  Multiheuristic Approach for Resource Leveling Problem in Construction Engineering: Hybrid Approach , 1999 .

[22]  J. Rodney Turner,et al.  Towards a theory of project management: the nature of the project , 2006 .

[23]  O. V. Krishnaiah Chetty,et al.  Petri Nets for Project Management and Resource Levelling , 2000 .

[24]  Sameh M. El-Sayegh,et al.  Cost Optimization Model for the Multiresource Leveling Problem with Allowed Activity Splitting , 2011 .

[25]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[26]  Peter J. Burman,et al.  Precedence Networks for Project Planning and Control , 1972 .

[27]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[28]  Robert Blynn Harris,et al.  Precedence and Arrow Networking Techniques for Construction , 1980 .

[29]  J. Rodney Turner,et al.  Towards a theory of Project Management: The functions of Project Management , 2006 .

[30]  Tarek Hegazy,et al.  Optimization of Resource Allocation and Leveling Using Genetic Algorithms , 1999 .

[31]  Víctor Yepes,et al.  Automatic design of concrete vaults using iterated local search and extreme value estimation , 2012 .

[32]  Georgios Ellinas,et al.  Minimum Moment Method for Resource Leveling Using Entropy Maximization , 2010 .

[33]  Piotr Jaśkowski,et al.  Scheduling Construction Projects Using Evolutionary Algorithm , 2006 .

[34]  Moncer Hariga,et al.  Hybrid meta-heuristic methods for the multi-resource leveling problem with activity splitting , 2012 .

[35]  Javier Roca,et al.  Solving an Extended Resource Leveling Problem with Multiobjective Evolutionary Algorithms , 2008 .

[36]  Professor Dr. Klaus Neumann,et al.  Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.

[37]  Said M. Easa,et al.  Resource Leveling in Construction by Optimization , 1989 .

[38]  Fadi A. Karaa,et al.  Resource Management in Construction , 1986 .

[39]  Chen Lin,et al.  An Adaptive Genetic Algorithm Based on Population Diversity Strategy , 2009, 2009 Third International Conference on Genetic and Evolutionary Computing.

[40]  Philip M. Wolfe,et al.  Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach , 1969 .

[41]  Rainer Kolisch,et al.  Characterization and generation of a general class of resource-constrained project scheduling problems , 1995 .

[42]  Klaus Neumann,et al.  Heuristic procedures for resource—constrained project scheduling with minimal and maximal time lags: the resource—levelling and minimum project—duration problems , 1996 .

[43]  Jürgen Zimmermann,et al.  Resource Leveling in Make-to-Order Production : Modeling and Heuristic Solution Method , 2006 .

[44]  J. Rodney Turner Do you manage work, deliverables or resources? , 2000 .

[45]  Jürgen Zimmermann,et al.  Exact methods for the resource levelling problem , 2011, J. Sched..

[46]  N. Agin Optimum Seeking with Branch and Bound , 1966 .

[47]  Konstantinos P. Anagnostopoulos,et al.  Construction Resource Allocation and Leveling Using a Threshold Accepting–Based Hyperheuristic Algorithm , 2012 .

[48]  Ramón Alvarez-Valdés Olaguíbel,et al.  Chapter 5 – HEURISTIC ALGORITHMS FOR RESOURCE-CONSTRAINED PROJECT SCHEDULING: A REVIEW AND AN EMPIRICAL ANALYSIS , 1989 .

[49]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[50]  Sou-Sen Leu,et al.  RESOURCE LEVELING IN CONSTRUCTION BY GENETIC ALGORITHM-BASED OPTIMIZATION AND ITS DECISION SUPPORT SYSTEM APPLICATION , 2000 .

[51]  Martina Huemann,et al.  Human resource management in the project-oriented company: A review , 2007 .

[52]  Sönke Hartmann,et al.  Project Scheduling with Multiple Modes: A Genetic Algorithm , 2001, Ann. Oper. Res..

[53]  Rainer Kolisch,et al.  PSPLIB - a project scheduling problem library , 1996 .