Interneuron Diversity series: Hippocampal interneuron classifications – making things as simple as possible, not simpler

The nervous system is made up of many specific types of neuron intricately intertwined to form complex networks. Identifying and defining the characteristic features of the many different neuronal types is essential for achieving a cellular understanding of complex activity from perception to cognition. So far, cortical GABAergic interneurons have represented the epitome of cellular diversity in the CNS. Despite the desperate need for effective classification criteria allowing a common language among neuroscientists, interneurons still evoke memories of Babel. Several approaches are now available to overcome the challenges and problems associated with the various classification systems used so far.

[1]  Karen L. Smith,et al.  Novel Hippocampal Interneuronal Subtypes Identified Using Transgenic Mice That Express Green Fluorescent Protein in GABAergic Interneurons , 2000, The Journal of Neuroscience.

[2]  K. Staley,et al.  Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors , 1995, Science.

[3]  Dennis A. Turner,et al.  Interneurons of the Dentate–Hilus Border of the Rat Dentate Gyrus: Morphological and Electrophysiological Heterogeneity , 1997, The Journal of Neuroscience.

[4]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[5]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[6]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[7]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[8]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca2+‐permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics , 2003, The Journal of physiology.

[9]  K. Tóth,et al.  Target-specific expression of presynaptic mossy fiber plasticity. , 1998, Science.

[10]  P. Jonas,et al.  Kv3 Potassium Conductance is Necessary and Kinetically Optimized for High-Frequency Action Potential Generation in Hippocampal Interneurons , 2003, The Journal of Neuroscience.

[11]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[12]  Hannah Monyer,et al.  Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. McBain,et al.  Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  C. Lupica,et al.  Opioid Inhibition of Hippocampal Interneurons via Modulation of Potassium and Hyperpolarization-Activated Cation (Ih) Currents , 1998, The Journal of Neuroscience.

[15]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[16]  Hongqing Guo,et al.  Single-Cell Microarray Analysis in Hippocampus CA1: Demonstration and Validation of Cellular Heterogeneity , 2003, The Journal of Neuroscience.

[17]  P. Andersen,et al.  Two different responses of hippocampal pyramidal cells to application of gamma‐amino butyric acid. , 1980, The Journal of physiology.

[18]  Attila Losonczy,et al.  Cell type dependence and variability in the short‐term plasticity of EPSCs in identified mouse hippocampal interneurones , 2002, The Journal of physiology.

[19]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[20]  C. Chapman,et al.  Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. , 1999, Journal of neurophysiology.

[21]  T. Isa,et al.  Distribution of neurones expressing inwardly rectifying and Ca(2+)‐permeable AMPA receptors in rat hippocampal slices. , 1996, The Journal of physiology.

[22]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[23]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[24]  R. Cossart,et al.  Presynaptic Kainate Receptors that Enhance the Release of GABA on CA1 Hippocampal Interneurons , 2001, Neuron.

[25]  P. Jonas,et al.  PTP and LTP at a hippocampal mossy fiber-interneuron synapse , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[27]  Richard Miles,et al.  EPSP Amplification and the Precision of Spike Timing in Hippocampal Neurons , 2000, Neuron.

[28]  J. Lacaille,et al.  Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  C. Ribak,et al.  Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase , 1978, Journal of neurocytology.

[30]  T. Freund,et al.  Changes in excitatory and inhibitory circuits of the rat hippocampus 12–14 months after complete forebrain ischemia , 1999, Neuroscience.

[31]  P. Somogyi,et al.  The metabotropic glutamate receptor (mGluRlα) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction , 1993, Neuron.

[32]  D. Schoepp,et al.  Metabotropic glutamate receptors , 1994, Pharmacology Biochemistry and Behavior.

[33]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[34]  Raymond Dingledine,et al.  Control of Feedforward Dendritic Inhibition by NMDA Receptor-Dependent Spike Timing in Hippocampal Interneurons , 2002, The Journal of Neuroscience.

[35]  J. Storm-Mathisen,et al.  First visualization of glutamate and GABA in neurones by immunocytochemistry , 1983, Nature.

[36]  Tamás F Freund,et al.  Interneuron Diversity series: Rhythm and mood in perisomatic inhibition , 2003, Trends in Neurosciences.

[37]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[38]  Peter Jonas,et al.  Gating, modulation and subunit composition of voltage‐gated K+ channels in dendritic inhibitory interneurones of rat hippocampus , 2002, The Journal of physiology.

[39]  J. Rossier,et al.  Classification of fusiform neocortical interneurons based on unsupervised clustering. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Kauer,et al.  Hippocampal Interneurons Express a Novel Form of Synaptic Plasticity , 1997, Neuron.

[41]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[42]  A. Ylinen,et al.  Pattern of neuronal death in the rat hippocampus after status epilepticus. Relationship to calcium binding protein content and ischemic vulnerability , 1992, Brain Research Bulletin.

[43]  H. Katsumaru,et al.  GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus , 1987, Brain Research.

[44]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[45]  F. Stephenson,et al.  The GABAA receptors. , 1995, The Biochemical journal.

[46]  T. Kosaka,et al.  Gap Junctions Linking the Dendritic Network of GABAergic Interneurons in the Hippocampus , 2000, The Journal of Neuroscience.

[47]  J. Lacaille,et al.  Membrane potential and intracellular Ca2+ oscillations activated by mGluRs in hippocampal stratum oriens/alveus interneurons. , 1999, Journal of neurophysiology.

[48]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[49]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[50]  R. Williams,et al.  Biochemical Individuality: The Basis for the Genetotrophic Concept , 1957 .

[51]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[52]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[53]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[54]  Friedrich Huisken,et al.  Distal Initiation and Active Propagation of Action Potentials in Interneuron Dendrites , 2000 .

[55]  L. Acsády,et al.  Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus , 1999, Neuroscience.

[56]  P. Somogyi,et al.  Large variability in synaptic n-methyl-d-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus , 2003, Neuroscience.

[57]  M. Vreugdenhil,et al.  Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. , 2003, Journal of neurophysiology.

[58]  C. McBain,et al.  Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region , 1995, Neuron.

[59]  M. Frotscher,et al.  “Dormant basket cell” hypothesis revisited: Relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat , 2003, The Journal of comparative neurology.

[60]  P. Schwartzkroin,et al.  Physiological and morphological identification of a nonpyramidal hippocampal cell type , 1978, Brain Research.

[61]  M. Atzori,et al.  H2 histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking , 2000, Nature Neuroscience.

[62]  I. Katona,et al.  Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum , 2003, The European journal of neuroscience.

[63]  D. Linden,et al.  Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons , 2000, Nature Neuroscience.

[64]  N. Lambert,et al.  The mechanism of biphasic GABA responses , 1995, Science.

[65]  P. Jonas,et al.  TwoB or not twoB: differential transmission at glutamatergic mossy fiber–interneuron synapses in the hippocampus , 2002, Trends in Neurosciences.

[66]  I. Módy,et al.  Synaptic Communication among Hippocampal Interneurons: Properties of Spontaneous IPSCs in Morphologically Identified Cells , 1997, The Journal of Neuroscience.

[67]  C. McBain,et al.  The hyperpolarization‐activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens‐alveus interneurones. , 1996, The Journal of physiology.

[68]  J. Deuchars,et al.  CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices , 1998, The Journal of physiology.

[69]  H. Monyer,et al.  Differential Expression of Group I Metabotropic Glutamate Receptors in Functionally Distinct Hippocampal Interneurons , 2000, The Journal of Neuroscience.

[70]  Yasuo Kawaguchi,et al.  Fast-spiking non-pyramidal cells in the hippocampal CA3 region, dentate gyrus and subiculum of rats , 1987, Brain Research.

[71]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  T. Freund,et al.  Precision and Variability in Postsynaptic Target Selection of Inhibitory Cells in the Hippocampal CA3 Region , 1993, The European journal of neuroscience.

[73]  B. L. Ginsborg THE PHYSIOLOGY OF SYNAPSES , 1964 .

[74]  Raymond Dingledine,et al.  Interneuron Diversity series: Interneuron research – challenges and strategies , 2003, Trends in Neurosciences.

[75]  S. Cull-Candy,et al.  Activity-Dependent Change in AMPA Receptor Properties in Cerebellar Stellate Cells , 2002, The Journal of Neuroscience.

[76]  T. Freund,et al.  Synaptic Input of Horizontal Interneurons in Stratum Oriens of the Hippocampal CA1 Subfield: Structural Basis of Feed‐back Activation , 1995, The European journal of neuroscience.

[77]  Jan Konopacki,et al.  Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta-related cells. , 2002, Journal of neurophysiology.

[78]  Peter Somogyi,et al.  Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro , 2000, The Journal of physiology.

[79]  J. Lacaille,et al.  A hebbian form of long-term potentiation dependent on mGluR1a in hippocampal inhibitory interneurons , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  R. Dingledine,et al.  Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurones of rat hippocampus. , 1993, The Journal of physiology.

[81]  Ivan Soltesz,et al.  Postsynaptic effects of GABAergic synaptic diversity: regulation of neuronal excitability by changes in IPSC variance , 2002, Neuropharmacology.

[82]  R. Yuste,et al.  Ca 2 + imaging of mouse neocortical interneurone dendrites : Contribution of Ca 2 +-permeable AMPA and NMDA receptors to subthreshold Ca 2 + dynamics , 2003 .

[83]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[84]  P. Perin,et al.  The metabotropic glutamate receptors of the vestibular organs , 1998, Hearing Research.

[85]  I. Soltesz,et al.  Long-term plasticity in interneurons of the dentate gyrus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[86]  C. McBain,et al.  Distinct NMDA Receptors Provide Differential Modes of Transmission at Mossy Fiber-Interneuron Synapses , 2002, Neuron.