Arctic amplification dominated by temperature feedbacks in contemporary climate models

[1]  T. Mauritsen,et al.  Forcing and feedback in the MPI‐ESM‐LR coupled model under abruptly quadrupled CO2 , 2013 .

[2]  J. Meehl,et al.  A Decomposition of Feedback Contributions to Polar Warming Amplification , 2013 .

[3]  R. Bintanja,et al.  The changing seasonal climate in the Arctic , 2013, Scientific Reports.

[4]  Aiko Voigt,et al.  Climate and climate change in a radiative‐convective equilibrium version of ECHAM6 , 2013 .

[5]  I. Held,et al.  Using Relative Humidity as a State Variable in Climate Feedback Analysis , 2012 .

[6]  W. Hazeleger,et al.  Boundary layer stability and Arctic climate change: a feedback study using EC-Earth , 2012, Climate Dynamics.

[7]  J. Kay,et al.  Coupling between Arctic feedbacks and changes in poleward energy transport , 2011 .

[8]  P. Forster,et al.  Spatial Patterns of Modeled Climate Feedback and Contributions to Temperature Response and Polar Amplification , 2011 .

[9]  Thomas M. Marchitto,et al.  Enhanced Modern Heat Transfer to the Arctic by Warm Atlantic Water , 2011, Science.

[10]  Vladimir A. Alexeev,et al.  Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming , 2010 .

[11]  I. Simmonds,et al.  The central role of diminishing sea ice in recent Arctic temperature amplification , 2010, Nature.

[12]  Minghuai Wang,et al.  Polar amplification in a coupled climate model with locked albedo , 2009 .

[13]  Brian J. Soden,et al.  Quantifying Climate Feedbacks Using Radiative Kernels , 2008 .

[14]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[15]  J. Francis,et al.  The Arctic Amplification Debate , 2006 .

[16]  M. Winton,et al.  Amplified Arctic climate change: What does surface albedo feedback have to do with it? , 2006 .

[17]  A. Hall The role of surface albedo feedback in climate , 2004 .

[18]  S. Vavrus The Impact of Cloud Feedbacks on Arctic Climate under Greenhouse Forcing , 2004 .

[19]  M. Holland,et al.  Polar amplification of climate change in coupled models , 2003 .

[20]  G. Ramstein,et al.  Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation , 2001, Nature.

[21]  K. Mosegaard,et al.  Past temperatures directly from the greenland ice sheet , 1998, Science.

[22]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[23]  J. Hack,et al.  Diagnostic study of climate feedback processes in atmospheric general circulation models , 1994 .

[24]  John E. Walsh,et al.  Recent Variations of Sea Ice and Air Temperature in High Latitudes , 1993 .

[25]  Jonathan D. W. Kahl,et al.  Low-Level Temperature Inversions of the Eurasian Arctic and Comparisons with Soviet Drifting Station Data , 1992 .

[26]  E. Barron A WARM EQUABLE CRETACEOUS: THE NATURE OF THE PROBLEM , 1983 .

[27]  S. Manabe,et al.  On the Distribution of Climate Change Resulting from an Increase in CO2 Content of the Atmosphere , 1980 .

[28]  S. Manabe,et al.  The Effects of Doubling the CO2 Concentration on the climate of a General Circulation Model , 1975 .

[29]  M. Planck Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .

[30]  S. Arrhenius “On the Infl uence of Carbonic Acid in the Air upon the Temperature of the Ground” (1896) , 2017, The Future of Nature.