Boundary feedback stabilization for a quasi-linear wave equation

[1]  David L. Russell,et al.  Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  M. Slemrod Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity , 1981 .

[3]  J. Greenberg Smooth and time-periodic solutions to the quasilinear wave equation , 1975 .

[4]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[5]  R. C. MacCamy,et al.  An integro-differential equation with application in heat flow , 1977 .

[6]  C. C. Wang,et al.  Introduction to Rational Elasticity , 1973 .

[7]  Sergiu Klainerman,et al.  Global existence for nonlinear wave equations , 1980 .

[8]  R. MacCamy A model for one-dimensional, nonlinear viscoelasticity , 1977 .

[9]  Jeffrey Rauch,et al.  Exponential Decay of Solutions to Hyperbolic Equations in Bounded Domains , 1974 .

[10]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .

[11]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[12]  Constantine M. Dafermos,et al.  A Nonlinear Hyperbolic Volterra Equation in Viscoelasticity. , 1980 .

[13]  Mark J. Balas,et al.  Trends in large space structure control theory: Fondest hopes, wildest dreams , 1982 .

[14]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[15]  J. Greenberg,et al.  The effect of boundary damping for the quasilinear wave equation , 1984 .

[16]  David L. Russell,et al.  Nonharmonic Fourier series in the control theory of distributed parameter systems , 1967 .

[17]  J. Nohel,et al.  Energy methods for nonlinear hyperbolic volterra integrodifferential equations , 1979 .

[18]  A. Matsumura,et al.  Global Existence and Asymptotics of the Solutions of the Second-Order Quasilinear Hyperbolic Equations with the First-Order Dissipation , 1977 .