Computing halfspace depth contours based on the idea of a circular sequence
暂无分享,去创建一个
[1] David E. Tyler. Finite Sample Breakdown Points of Projection Based Multivariate Location and Scatter Statistics , 1994 .
[2] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[3] Regina Y. Liu. On a Notion of Data Depth Based on Random Simplices , 1990 .
[4] Tatjana Lange,et al. Computing zonoid trimmed regions of dimension d>2 , 2009, Comput. Stat. Data Anal..
[5] David Bremner,et al. Primal—Dual Methods for Vertex and Facet Enumeration , 1998, Discret. Comput. Geom..
[6] R. Dyckerhoff. Computing zonoid trimmed regions of bivariate data sets , 2000 .
[7] A. B. Yeh,et al. Balanced Confidence Regions Based on Tukey’s Depth and the Bootstrap , 1997 .
[8] R. W. Floyd,et al. Algorithm 489: the algorithm SELECT—for finding the ith smallest of n elements [M1] , 1975, CACM.
[9] R. Serfling,et al. General notions of statistical depth function , 2000 .
[10] Ignacio Cascos,et al. The expected convex hull trimmed regions of a sample , 2007, Comput. Stat..
[11] K. Mosler. Depth Statistics , 2012, Encyclopedia of Image Processing.
[12] Christopher G. Small,et al. A nonparametric multivariate multisample test based on data depth , 2012 .
[13] D. Pollard,et al. Cube Root Asymptotics , 1990 .
[14] P. Rousseeuw,et al. Bivariate location depth , 1996 .
[15] Z. Bai,et al. Asymptotic distributions of the maximal depth estimators for regression and multivariate location , 1999 .
[16] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[17] Davy Paindaveine,et al. Computing multiple-output regression quantile regions from projection quantiles , 2011, Computational Statistics.
[18] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[19] Regina Y. Liu,et al. Regression depth. Commentaries. Rejoinder , 1999 .
[20] Zhizhong Wang,et al. Exactly computing bivariate projection depth contours and median , 2011, Comput. Stat. Data Anal..
[21] Linglong Kong,et al. Quantile tomography: using quantiles with multivariate data , 2008, Statistica Sinica.
[22] Miroslav Siman,et al. On directional multiple-output quantile regression , 2011, J. Multivar. Anal..
[23] Peter Rousseeuw,et al. Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..
[24] Anil K. Ghosh,et al. On Maximum Depth and Related Classifiers , 2005 .
[25] Y. Zuo. Projection-based depth functions and associated medians , 2003 .
[26] D. Paindaveine,et al. Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth , 2010, 1002.4486.
[27] P. Rousseeuw,et al. Computing depth contours of bivariate point clouds , 1996 .
[28] D. Donoho,et al. Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .
[29] Miroslav Siman,et al. Computing multiple-output regression quantile regions , 2012, Comput. Stat. Data Anal..
[30] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[31] K. Mosler,et al. Zonoid trimming for multivariate distributions , 1997 .