Computing halfspace depth contours based on the idea of a circular sequence

This paper presents a new efficient algorithm for exactly computing the halfspace depth contours based on the idea of a circular sequence. Unlike the existing methods, the proposed algorithm segments the unit sphere directly relying on the permutations that correspond to the projections of observations onto some unit directions, without having to use the technique of parametric programming. Some data examples are also provided to illustrate the performance of the proposed algorithm.

[1]  David E. Tyler Finite Sample Breakdown Points of Projection Based Multivariate Location and Scatter Statistics , 1994 .

[2]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[3]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[4]  Tatjana Lange,et al.  Computing zonoid trimmed regions of dimension d>2 , 2009, Comput. Stat. Data Anal..

[5]  David Bremner,et al.  Primal—Dual Methods for Vertex and Facet Enumeration , 1998, Discret. Comput. Geom..

[6]  R. Dyckerhoff Computing zonoid trimmed regions of bivariate data sets , 2000 .

[7]  A. B. Yeh,et al.  Balanced Confidence Regions Based on Tukey’s Depth and the Bootstrap , 1997 .

[8]  R. W. Floyd,et al.  Algorithm 489: the algorithm SELECT—for finding the ith smallest of n elements [M1] , 1975, CACM.

[9]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[10]  Ignacio Cascos,et al.  The expected convex hull trimmed regions of a sample , 2007, Comput. Stat..

[11]  K. Mosler Depth Statistics , 2012, Encyclopedia of Image Processing.

[12]  Christopher G. Small,et al.  A nonparametric multivariate multisample test based on data depth , 2012 .

[13]  D. Pollard,et al.  Cube Root Asymptotics , 1990 .

[14]  P. Rousseeuw,et al.  Bivariate location depth , 1996 .

[15]  Z. Bai,et al.  Asymptotic distributions of the maximal depth estimators for regression and multivariate location , 1999 .

[16]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[17]  Davy Paindaveine,et al.  Computing multiple-output regression quantile regions from projection quantiles , 2011, Computational Statistics.

[18]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[19]  Regina Y. Liu,et al.  Regression depth. Commentaries. Rejoinder , 1999 .

[20]  Zhizhong Wang,et al.  Exactly computing bivariate projection depth contours and median , 2011, Comput. Stat. Data Anal..

[21]  Linglong Kong,et al.  Quantile tomography: using quantiles with multivariate data , 2008, Statistica Sinica.

[22]  Miroslav Siman,et al.  On directional multiple-output quantile regression , 2011, J. Multivar. Anal..

[23]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[24]  Anil K. Ghosh,et al.  On Maximum Depth and Related Classifiers , 2005 .

[25]  Y. Zuo Projection-based depth functions and associated medians , 2003 .

[26]  D. Paindaveine,et al.  Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth , 2010, 1002.4486.

[27]  P. Rousseeuw,et al.  Computing depth contours of bivariate point clouds , 1996 .

[28]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[29]  Miroslav Siman,et al.  Computing multiple-output regression quantile regions , 2012, Comput. Stat. Data Anal..

[30]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[31]  K. Mosler,et al.  Zonoid trimming for multivariate distributions , 1997 .